ICSD 2021

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT

October 13-17 2021

PROCEEDINGS BOOK

www.icsd.eu

7th INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT (ICSD)

ISSN: 2687-2420

PROCEEDINGS OF THE

7th INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT (ICSD) OCTOBER 13,-17 2021, HYBRID CONFERENCE, ISTANBUL

Edited by

Prof. Dr. Özer Çınar

Published, 2021

info@icsd.eu www.icsd.eu

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned. Nothing from this publication may be translated, reproduced, stored in a computerized system or published in any form or in any manner, including, but not limited to electronic, mechanical, reprographic or photographic, without prior written permission from the publisher.

info@icsd.org

The individual contributions in this publication and any liabilities arising from them remain the responsibility of the authors.

The publisher is not responsible for possible damages, which could be a result of content derived from this publication.

SCIENTIFIC COMMITTEE

Prof.Dr. Adisa Parić - University of Sarajevo - Bosnia & Herzegovina 1. 2. Prof.Dr. Adnan Çelik - Selçuk University - Turkey 3. Prof.Dr. Alfonso Vargas-Sanchez - University of Huelva - Spain 4. Prof.Dr. Ana Vovk-Korže - University of Maribor - Slovenia 5. Prof.Dr. Archie Caroll - University of Georgia - USA 6. Prof.Dr. Birol Kovancilar - Celal Bayar University - Turkey 7. Prof.Dr. Blerim Reka - South-East European University - Macedonia 8. Prof.Dr. Dragan Vinterhalter - University of Belgrade - Serbia Prof.Dr. Dragutin T. Mihailović - University of Novi Sad - Serbia 9. Prof.Dr. Edina Muratović - University of Sarajevo - Bosnia & Herzegovina 10. 11. Prof.Dr. Esad Prohic - University of Zagreb - Croatia 12. Prof.Dr. Flutura Kalemi - Agricultural University of Tirana - Albania 13. Prof.Dr. Ilia Ninka - Tetova State University - Macedonia 14. Prof.Dr. Ismail Bakan - Kahramanmaras Sutcu Imam University - Turkey Prof.Dr. Janusz Slodczyk - Opole University - Poland 15. Prof.Dr. Lindita Milo (Lati) - University of Tirana - Albania 16. 17. Prof.Dr. Lukman Thalib - Qatar University - Qatar 18. Prof.Dr. M. Asghar Fazel - University of Environment - Iran 19. Prof.Dr. M. M. Sulphy - University of Kerala - India 20. Prof.Dr. Muammer Koc - Hamad bin Khalifa University - Qatar Prof.Dr. Mustafa Erdoğdu - Marmara University - Turkey 21. Prof.Dr. Mustafa Özbilgin - Brunel University - UK 22. 23. Prof.Dr. Phoebe Koundouri - Athens University of Economics and Business - Greece 24. Prof.Dr. Refika Bakoğlu - Marmara University - Turkey 25. Prof.Dr. Rifat Skrijelj - University of Sarajevo - Bosnia & Herzegovina Prof.Dr. Seniye Umit Fırat - Marmara University - Turkey 26. Prof.Dr. Seval Kardeş Selimoğlu - Anadolu University - Turkey 27. 28. Prof.Dr. Suzana Guxholli, University of New York in Tirana - Albania 29. Prof.Dr. Tanay Sıtkı Uyar - Marmara University - Turkey 30. Prof.Dr. Thankom Arun - Lancashire Business School - UK 31. Prof.Dr. Wiboon Kittilaksanawong - Saitama University - Japan 32. Prof.Dr. Yahia Zoubir - KEDGE Business School - France 33. Prof.Dr. Yousef Haik - Hamad bin Khalifa University - Qatar 34. Prof.Dr. Zehra Semra Can - Marmara University - Turkey Assoc. Prof.Dr. Agim Mamuti - Mother Teresa University - North Macedonia 35. 36. Assoc. Prof.Dr. Alaa Al Hawari - Qatar University - Qatar 37. Assoc. Prof.Dr. Asma Salman - The American University in the Emirates - UAE 38. Assoc. Prof.Dr. Christina Anne Stringer - The University of Auckland - New Zealand 39. Assoc. Prof.Dr. Mirko Perano - University of Salerno - Italy Assoc. Prof.Dr. Mostafa Jafari - Research Institute of Forests and Rangelands - Iran 40. 41. Assoc. Prof.Dr. Nusret Drešković - University of Sarajevo - Bosnia & Herzegovina Assoc. Prof.Dr. Raman Ismaili - Tetova State University - Macedonia 42. 43. Assist. Prof.Dr. Ahmad Talebi - University of Environment - Iran 44. Assist. Prof.Dr. Fouzi Tabet - German Biomass Research Center - Germany 45. Assist. Prof.Dr. Konstantinos Chalvatzis - University of Anglia - UK 46. Assist. Prof.Dr. Mark R. Murphy - The University of Scranton - USA 47. Assist. Prof.Dr. Mehmet Ganić - International University of Sarajevo - Bosnia & Herzegovina 48. Assoc. Prof.Dr. Minura Lucia Nachescu - West University of Timiosara - Romania 49. Assist. Prof.Dr. Mostafa Panahi - Islamic Azad University - Iran 50. Assist. Prof.Dr. Sasan Rabieh - Shahid Beheshti University - Iran 51. Assist. Prof.Dr. Ševkija Okerić - University of Sarajevo - Bosnia & Herzegovina Assist. Prof.Dr. Ivana Plazonić - University of Zagreb - Croatia 52. 53. Assist.Prof.Dr. J.Amudhavel - VIT Bhopal University - India 54. Dr. Leszek Cichobłaziński - Częstochowa University of Technology - Poland

ORGANIZATION COMMITTEE

Chairman of the Conference

Prof. Dr. Özer Çınar – Yıldız Technical University - Turkey

Members of the Committee

Assoc.Prof.Dr. Agim Mamuti (Co-Chairman) - Mother Teresa University - North Macedonia

Assoc.Prof.Dr. Mirko Perano - University of Salerno - Italy

Alma Ligata - Zenith Group - Bosnia and Herzegovina

Ismet Uzun - Zenith Group - Bosnia and Herzegovina

Mahira Causevic - Bosnia and Herzegovina

WELCOME TO ICSD 2021

On behalf of the organizing committee, we are pleased to announce that the 4th International Conference on Sustainable Development (ICSD-2021) is held from October 13-17, 2021 in Istanbul, Turkey (Hybrid Conference). ICSD 2021 provides an ideal academic platform for researchers to present the latest research findings and describe emerging technologies, and directions in Sustainable Development issues. The conference seeks to contribute to presenting novel research results in all aspects of Sustainable Development. The conference aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results about all aspects of Sustainable Development. It also provides the premier interdisciplinary forum for scientists, engineers, and practitioners to present their latest research results, ideas, developments, and applications in all areas of Engineering and Natural Sciences. The conference will bring together leading academic scientists. researchers and scholars in the domain of interest from around the world. ICSD 2021 is the oncoming event of the successful conference series focusing on Sustainable Development. The scientific program focuses on current advances in the research, production and use of Engineering and Natural Sciences with particular focus on their role in maintaining academic level in Engineering and Applied Sciences and elevating the science level. The conference's goals are to provide a scientific forum for all international prestige scholars around the world and enable the interactive exchange of state-of-the-art knowledge. The conference will focus on evidence-based benefits proven in clinical trials and scientific experiments.

Best regards,

Prof. Dr. Özer ÇINAR

CONTENT	COUNTRY	PAGE
The behavior of irreversible thermochromic inks in the paper recycling process	Croatia	1
Durability Examination of the UHF RFID Labels with Respect to Environmental Changes in Terms of Elevated Temperature and UV radiation	Croatia	9
UI Green Metric Ranking Performance Analysis of Universities in Turkey: Suggestions Towards to Becoming Green Campuses	Turkey	16
Advanced Quality And Sustainability When Printing Irreversible Thermochromic Inks	Croatia	26
Use of Structural Equation Modeling to Develop a Sustainable Hunting Scale	Turkey	34
Digitalization of Farming and Sustainable Agricultural Development	Ukraine	39
Recycling of aged inkjet prints with nano technology based inks	Croatia	49
Changes in Color and Drying Time of Modified Polyvinyl Acetate Adhesive with Nanoparticles	Croatia	56

The behavior of irreversible thermochromic inks in the paper recycling process

Marina Vukoje^{1*}, Ivana Bolanča Mirković¹, Rahela Kulčar¹, Renato Glibo¹

Abstract

Thermochromic printing inks are special chromogenic inks that change their color by exposure at a certain temperature, which is usually called the activation temperature (TA). The color change can be irreversible or reversible. The property of irreversible color change in relation to temperature exposure over time, allows the development of numerous indicators. As such, they can be used to monitor the storage and transportation of temperature-sensitive products, such as refrigerated and frozen foods, drugs, temperature-sensitive chemicals, or biological materials, etc. Since the ink formulation is an important factor in the deinking process, the aim of this research is to determine the recycling efficiency of irreversible thermochromic prints. Thermochromic inks differ from conventional printing inks in formulation and pigment size due to the presence of microcapsules that are much larger than conventional pigment particles. For this study, two irreversible thermochromic printing inks are printed by screen printing in full tone, on one printing substrate. To explain the behavior of these inks in the recycling process, the hydrophobicity of the sample surface was examined, as one significant factor in the flotation process using the contact angle of water. Recycling of prints was carried out in laboratory conditions, by chemical deinking flotation in alkaline conditions. Sheets were made for each sample before and after flotation. Optical properties of the recycled samples show that these inks are difficult to recycle. The deinking flotation method is not entirely the best method for recycling of irreversible thermochromic inks because slight differences in the optical properties of the laboratory paper samples before and after flotation are achieved. Future research should go in the direction of new techniques such as adsorption and enzymatic deinking.

Keywords: thermochromic inks, paper recycling, optical properties, surface properties

1. INTRODUCTION

The waste paper recycling process and its use to produce new product reduces the number of trees that are cut down, as well as water and energy consumption conserving natural resources [1]. In order to obtain recycled fibers suitable for the production of recycled paper, the printing ink and other impurities must be separated to the greatest extent from the pulp suspension. The amount of residual ink in the suspension affects the final optical properties of the recycled paper. Therefore, a process for removal of printing ink is required. Deinking flotation is the most common process used for the separation of ink from the pulp suspension by means of air bubbles performed in a flotation cell. Inside the cell, the device blows out hydrophobic air bubbles that mix with the suspension and the hydrophobic ink particles cling to them and go towards the surface, while removable flotation foam (froth) forms on the surface [2]–[4]. Flotation can be aided by the use of different chemicals that increase the hydrophobicity property of the ink particles. Flotation efficiency is affected by various parameters such as the ability of the ink to bind to the air bubble, the ink to collide with the bubble, and the removal of flotation froth from the surface of the suspension during flotation [2], [4]. The brightness of the

¹University of Zagreb Faculty of Graphic Arts, Getaldićeva 2, 10000 Zagreb, Croatia

pulp is very often a measure of the efficiency of the flotation process since the removal of printing ink from the system affects the pulp's brightness [5], [6].

Smart materials are often discussed as materials that feel some stimulus from the external environment and create a useful response. Perhaps it is better to think of the answer, often called "smart behavior", which occurs when the environment reacts in a useful and reliable way, without affecting the material itself. Thermochromism is the specific ability of a substance, atomic group, or material to change its optical state. Materials that, within their complex structure, have a dynamic mechanism of color change due to the change in temperature that affects the complex formation, introduce an innovation to the market while offering improved product information transfer. Thermochromic mechanisms are divided according to the criterion of duration into reversible (multiple and temporary color change) and irreversible (single and permanent color change). Thermochromism in the printing industry is widely used precisely because of the new channel of information communication to the end user. Therefore, the thermochromic mechanism finds its benefits in terms of smart packaging, security printing, a multitude of promotional and marketing visuals. Thermochromic inks are composed of thermochromic pigments and vehicle. Thermochromic pigments are mainly encapsulated leuco dye-developer-solvent systems. Leuco dyes are colorless or weakly colored compounds which in reaction with a developer transform into a colored state [7].

Nowdays, more and more products on the market, precisely because of their competitiveness, strive to develop new functional properties that will attract consumers. Each new formulation will have a different effect on the environment, so it is necessary to determine the environmental impact of all new components, *i.e.* materials [8]. When it comes to reversible thermochromic printing inks, the research on their potential environmental and safety risks are limited. Thermochromic offset printing inks are very difficult to recycle by means of chemical deinking flotation method, while biodegradability studies showed that polymerized ink vehicle (vegetable oil + resin) in thermochromic offset ink is more stable than the polymer resin present in UV curable screen printing thermochromic ink (polyurethane acrylate) [9]–[11]. Additionally, another potential problem with thermochromic inks is the presence of bisphenol A (BPA) as one of the main compounds and its potential migration from the surface of the thermochromic print to artificial sweat solutions [12], [13], as well as the presence of BPA recycled paper made from thermochromic prints [14].

Thus, the aim of this study is to examine the possibility of thermochromic irreversible ink recycling and ink behavior in recycling process.

2. EXPERIMENTAL PART

2.1. Materials

In the preparation of experiment, two irreversible thermochromic printing inks were used, Kromagen Magenta MB60-NH (hereinafter 60MG), with an activation temperature of 60° C, and Termosil Red 75/80 (hereinafter 120MG) with an activation temperature of 75-80° C. Both printing inks were screen printed using semiautomatic screen-printing device (Holzschuher K.G., Wuppertal), employing 62/64 mesh for 60MG thermochromic ink, and 120 mesh for 120MG TC ink, on uncoated paper (120 g/m²). All prints were made in full tone. The printing inks when exposed to activation temperature change color permanently, 60MG changes color from light pink to purple, while 120MG changes color from colorless to magenta.

2.2. Methods

2.3. Evaluation of surface wettability

The evaluation of surface wettability of paper and prints (inactivated and activated) were carried out by water contact angle measurements on DataPhysics OCA 30 Goniometer, using the Sessile Drop method. Measurements were performed at room temperature $23.0 \pm 0.2^{\circ}$ C. The volume of water droplet was 1 µl. Contact angle was captured by CCD camera and measured 1–2 s after the droplet was formed. Average values of ten drops on different places of the same sample were taken and presented as mean±SD.

2.4. Paper recycling process

Printed paper samples were recycled by means of chemical deinking flotation under laboratory conditions defined by standard procedures described in ISO 21993:2020 [15], as presented in Figure 1. Unprinted paper and irreversible thermochromic prints were disintegrated in Enrico Toniolo disintegrator, while the flotation process was performed in the laboratory flotation cell. A certain amount of pulp suspension was separated after disintegration process before flotation (BF) and after flotation process (F) to prepare laboratory sheets of 45 g/m², using automatic sheet-forming device Rapid-Kothen Sheet, PTI.

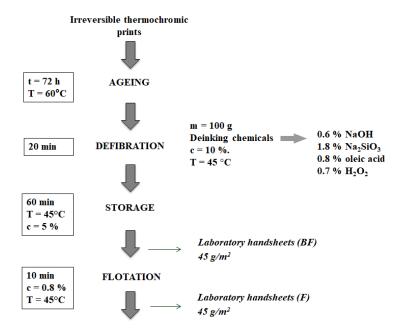


Figure 1.Shematic view of samples recycling process

2.4.1. Deinkability evaluation

The efficiency of recycling process was evaluated by measuring optical properties of laboratory handsheets made from undeinked pulp (BF) and deinked pulp (F). Evaluation of optical parameters was conducted according to standard methods: ISO Brightness (ISO 2470), CIE whiteness and colorimetric properties (ISO 11475) and ISO Opacity (ISO 2471) using Technydine Colour Touch 2 Spectrophotometer.

3. RESULTS AND DISCUSSION

In order to explain the behavior of the irreversible TC inks used in paper recycling, surface wettability of prints was determined. The contact angle of the water droplet on the substrate surface greater than 90° indicates that the substrate surface is hydrophobic while contact angle smaller than 90° indicates that surface is hydrophobic. Surface hydrophobicity can play a significant role in the deinking flotation process i.e., hydrophobic particles should be easier to remove from the pulp suspension.

The results of the contact angle measurements show that the unprinted paper substrate and the 120MG prints in the activated and inactivated state are hydrophobic (the water contact angle is greater than 90°) (Table 1). The results of the 60MG sample show that in the activated and inactivated state the print surface is hydrophilic

with a water contact angle smaller than 90° . It is possible that this phenomenon occurs because the thermochromic inks composition. The components in printing ink binder can contain compounds with functional groups which give hydrophilic/hydrophobic character of the print. For example, vegetable oil in which the ester groups are present increase the hydrophilic character of the prints [16].

Table 1. Contact angle (θ) of unprinted paper and thermochromic printed surfaces

	Unprinted substrate	60MG	60MG _{activated}	120MG	120MG _{activated}
θ/°	96.65±1.03	85.3±1.07	86.51±1.37	112.02±1.14	103.39±0.67

To determine the efficiency of the recycling process, laboratory paper handsheets $(45g/m^2)$ made before (BF) and after flotation (F) process were examined for their optical properties in the terms of ISO Brightness, CIE whiteness and colorimetric properties and ISO Opacity.

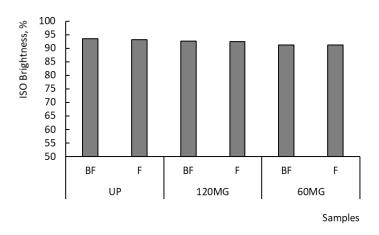


Figure 2. ISO Brightness of recycled fibres

The ISO brightness values of all samples are quite the same (Figure 2), with the highest value for the samples made of unprinted paper (93%), followed by the samples made from 120MG (92%) and the lowest for the 60MG sample (91%). The flotation process had no effect on the ISO brightness change for all samples (Figure). The lowest ISO brightness value is obtained for the 60MG sample, probably due to the hydrophilicity of the printed surface (Table 1).

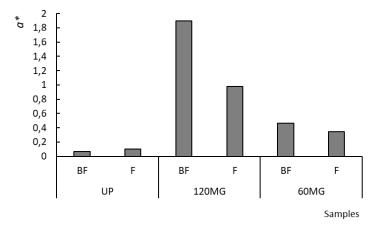


Figure 3. Colorimetric parameter CIE a* of recycled fibers

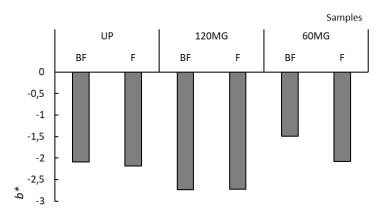


Figure 4. Colorimetric parameter CIE b* of recycled fibers

The values of the colorimetric parameter a^* (Figure 3) are highest for paper samples obtained by recycling of irreversible 120MG thermochromic prints, followed by recycled papers made from 60MG. The values on these samples are higher before flotation, which means that the ink particles are partially removed by flotation. A value of a^* indicates a shift to the red area, indicating a slight coloration of the laboratory paper handsheets.

Although the higher hydrophilicity of the 60MG thermochromic print surface was expected to result in a higher ink residue in the pulp suspension, this was not obtained in this study. The value of the colorimetric parameter a^* indicates that the more hydrophobic TC ink (120MG) remained in higher share in the pulp, while the hydrophilic TC ink showed lower a^* value, i.e., has smaller residue in pulp suspension.

The results of the colorimetric parameter b^* (Figure 4) for the recycled paper (before and after flotation process) made from unprinted paper and 120MG thermochromic prints are quite the same, i.e., the flotation process does not affect the b^* values. while after the flotation process they give higher values (Figure 11). The results of the paper obtained by recycling the samples printed with thermochromic ink 60MG show the lowest values of b^* , which indicates a smaller shift to the blue area compared to other tested samples.

Larger changes in CIE whiteness values occur after flotation in all samples (Figure 4), but these changes are very small. For recycled papers made from unprinted paper samples, the whiteness value before and after flotation is almost identical.

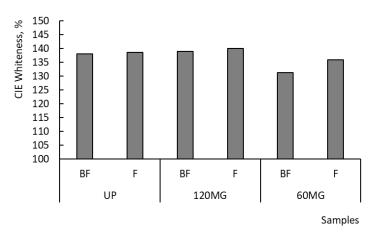


Figure 5. CIE Whiteness values of recycled fibers depending

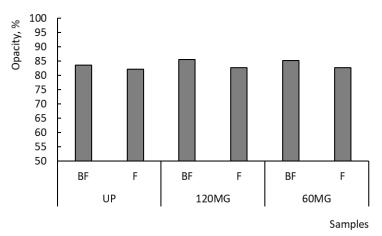


Figure 6. ISO opacity of recycled fibers

The opacity values of all samples are approximately the same (Figure 5). The results show that flotation process causes the loss of the fillers in the paper and the loss of them reduces the paper opacity. In samples obtained by recycling of unprinted paper, a decrease in opacity after flotation by about 1.37% is visible, while in samples obtained by recycling irreversible TC prints, a decrease in opacity is about 3.38% for 120MG and 2.95% for the 60MG sample, respectively. From this it could be concluded that the TC ink itself contributes to the loss of fillers, i.e., in some way it probably causes the filler particles to stick together resulting in higher removal in the flotation foam.

4. CONCLUSIONS

Despite the fact that the consumption of these kinds of printing inks is still limited, due to a Precautionary Principle it is necessar to examine thir possible impact on paper recycling process. The results of the optical properties of the recycled laboratory paper show that used irreversible thermochromic inks are difficult to recycle, although some changes were obtained by flotation, but the differences obtained are insignificant, i.e., very small. Also, the flotation process reduces the opacity of recycled paper because flotation causes the

removal of the fillers that serves as a substitute between cellulose fibers and paper. In addition, it can be assumed that a loss of optical brighteners occurred as well, especially in the TC ink sample which shows more hydrophilic character of the print surface. The deinking flotation method is not entirely the best method for recycling of irreversible thermochromic prints because slight differences in the optical properties of the recycled laboratory paper (obtained before and after flotation) are achieved. Also, the colorimetric parameters indicate a slight coloration of the sheets of paper which may point to the release of colorants into the pulp suspension. Future research should be focused on new processes and/or chemicals research, such as adsorption or enzymatic deinking, which in other studies have proven to be successful methods for removal of poorly deinkable inks like water-based inks.

ACKNOWLEDGMENT

The authors are grateful for the financial support of the University of Zagreb.

REFERENCES

- E. Bobu, A. Iosip, and F. Ciolacu, "Potential benefits of recovered paper sorting by advanced technology," *Cellul. Chem. Technol.*, vol. 44, no. 10, pp. 461–471, 2010.
- [2] A. Faul, "Quality requirements in graphic paper recycling," *Cellul. Chem. Technol.*, vol. 44, no. 10, pp. 451–460, 2010.
- [3] C. Jiang and J. Ma, "De-Inking of Waste Paper : Flotation," *Enzym. Deinking Technol.*, vol. 1, no. 3, pp. 2537–2544, 2000.
- [4] M. Vukoje and M. Rožić, "Various valorisation routes of paper intended for recycling A Review," Cellul. Chem. Technol., vol. 52, no. 7–8, pp. 515–541, 2018.
- [5] M. A. Hubbe, J. J. Pawlak, and A. A. Koukoulas, "Paper's appearance: A review," *BioResources*, vol. 3, no. 2, pp. 627–665, 2008.
- [6] M. A. Hubbe, R. A. Venditti, and O. J. Rojas, "What happens to cellulosic fibers during papermaking and recycling? a review," *BioResources*, vol. 2, no. 4, pp. 739–788, 2007.
- [7] A. Seeboth and D. Lotzsch, *Thermochromic and thermotropic materials*, vol. 1. Boca Raton, FL: CRC Press by Taylor & Francis Group, 2013.
- [8] P. A. Wäger, M. Eugster, L. M. Hilty, and C. Som, "Smart labels in municipal solid waste A case for the Precautionary Principle?," *Environ. Impact Assess. Rev.*, vol. 25, no. 5 SPEC. ISS., pp. 567–586, 2005, doi: 10.1016/j.eiar.2005.04.009.
- [9] M. Vukoje, S. Miljanić, J. Hrenović, and M. Rožić, "Thermochromic ink-paper interactions and their role in biodegradation of UV curable prints," *Cellulose*, vol. 25, no. 10, pp. 6121–6138, Oct. 2018, doi: 10.1007/s10570-018-1970-5.
- [10] M. Vukoje, S. Jamnicki, and M. Rožić, "Deinkability of thermochromic offset inks," Nord. Pulp Pap. Res. J., vol. 31, no. 04, pp. 692–699, Dec. 2016, doi: 10.3183/NPPRJ-2016-31-04-p692-699.
- [11] M. Vukoje, M. Rožić, S. Miljanić, and S. Pasanec Preprotić, "Biodegradation of thermochromic offset prints," Nord. Pulp Pap. Res. J., vol. 32, no. 2, pp. 289–298, 2017, doi: 10.3183/NPPRJ-2017-32-02-p289-298.
- [12] K. Vinković, M. Vukoje, M. Rožić, and N. Galić, "Migration of pseudoestrogen bisphenol A from various types of paper with thermochromic prints to artificial sweat solutions," J. Liq. Chromatogr. Relat. Technol., vol. 43, no. 5–6, pp. 195–202, 2020, doi: 10.1080/10826076.2019.1704775.
- [13] K. Vinković, M. Rožić, and N. Galić, "Development and validation of an HPLC method for the determination of endocrine disruptors bisphenol A and benzophenone in thermochromic printing inks," J. Liq. Chromatogr. Relat. Technol., vol. 40, no. 19, pp. 959–966, Nov. 2017, doi: 10.1080/10826076.2017.1391102.
- [14] S. Jamnicki Hanzer, M. Rožić, M. Vukoje, M. Jukić, and A. Galić, "Safety Evaluation of Deinked Pulp Containing Offset Thermochromic Inks," *BioResources*, vol. 13, no. 1, pp. 678–690, 2018, doi: 10.15376/biores.13.1.678-690.
- [15]21993:2020; ISO, "ISO 21993:2020 Paper and pulp Deinkability test for printed paper products." International Organization for Standardization, Geneva, 2020.
- [16] M. Pykonen, H. Silvaani, J. Preston, P. Fardim, and M. Toivakka, "Influence of plasma activation on absorption of offset ink components into pigment-coated paper," *Nord. Pulp Pap. Res. J.*, vol. 25, no. 1, pp. 93–99, 2010, doi: 10.3183/NPPRJ-2010-25-01-p093-099.

Biography: Marina Vukoje was born in 1987, Slavonski Brod, Croatia. She graduated from the University of Zagreb Faculty of Chemical Engineering and Technology, study course of Environmental Engineering in 2011. In October 2012 she was employed as an assistant at the Department of Environmental Protection, Faculty of

Graphic Arts, University of Zagreb. In the same year she enrolled in the postgraduate study of graphic engineering and graphic design. She participates in teaching courses: Industry and the Environment, Environmental Science and Design, Design and Environment, Environmental Management Systems, Packaging and the Environment. She finished her PhD on 4th July 2018, with the title "The influence of adhesion parameters on material and organic recycling of thermochromic prints" under a supervision of prof. Mirela Rožić, PhD. From September 2018 sha has been employed as a Postdoctoral researcher at the University of Zagreb Faculty of Graphic Arts. In December 2018 she become research associate. In January 2021 she has been appointed to Assistant Professor at the University of Zagreb Faculty of Graphic Arts, Zagreb, Croatia. She has actively participated in the work of the European Cooperation in Science and Technology, COST Action FP 1003 "Impact of Renewable Materials in Packaging for Sustainability - Development of Renewable Fiber and Bio-Based Materials for New Packaging Applications and COST Action FP 1405 project "Active and intelligent fiber-based packaging - innovation and market introduction" as a MC Substitute Member. She participated as a researcher on short term projects financed by the University of Zagreb from 2014 - 2019, supervised by prof. Mirela Rožić, PhD. In 2020, Marina Vukoje became a supervisor of short-term project named as "Characterization, durability and sustainability of advanced graphic materials", which continued in the 2021. So far, she has published 16 scientific papers in journals while 22 scientific papers were published in internationally - reviewed conference proceedings. She also published 7 professional papers.

Durability Examination of the UHF RFID Labels with Respect to Environmental Changes in Terms of Elevated Temperature and UV radiation

Katarina Itrić Ivanda¹, Marina Vukoje¹, Dorotea Kovačević¹, Rahela Kulčar¹

Abstract

One of the key points of interest of sustainability is the preservation of products in order to make full use of their predicted lifespan. In that sense UHF RFID labels are no different. UHF RFID labels have replaced traditional labels in a wide range of products, from unique luxury products to commercial packaging. The reason lies primarily in economy. Namely, tagged products are easy to track throughout the entire production and supply chain. The question arises as to what extent the quality of the label is affected by exposure to different environmental conditions within production and distribution chain process. To this end, durability of the UHF RFID labels with respect to environmental changes were examined. Samples were exposed to electromagnetic radiation (artificial aging for 48h and 96h) and elevated temperaturess (50 °C and 60 °C). Changes in the conductivity and read range frequency of the UHF RFID label antennas were determined. In order to get an insight into the degree of degradation, image analysis of the samples was performed with the Personal IAS imaging device.

Keywords: degradation, imaging, UHF RFID labels

1. INTRODUCTION

One of the key points of interest of sustainability is the preservation of products in order to make full use of their predicted lifespan. In that sense UHF RFID labels are no different. RFID labels are more and more present in the everyday life and have a wide range of applications that include manufacturing (inventory control, inventory management), different transport processes (shipping, vehicle tracking, supply chain logistics and distribution, livestock tracking), healthcare (equipment tracking, medication tracking), security systems, retail sales etc. Different areas of use imply the need for certain characteristics of labels primarily in relation to their durability caused by different ways of storage and transport of labeled products.

In order to address the durability and longlivity of UHF RFID tags we must first get acquainted with the basic concepts of RFID technology. RFID tag is constructed from two elementary parts (the chip and the antenna). If we want to simplify things, we can say that the chip is a miniature computer, while the antenna is a way of communicating between the chip and the reader. Two types of tags can be distinguished, active tags (having their own energy source) and passive tags (communicating when put in an electromagnetic field). The simplest way of explaining how the RFID communicates with the reader is when the reader emits an electromagnetic wave of a specific frequency it interacts with the RFID which in the end results in the back scattering at a frequency that carries information about the chip [1]-[3]. RFID tags come in various shapes and forms.

¹Corresponding author: University of Zagreb Faculty of Graphic Arts, 10000, Zagreb, Croatia. kitric@grf.hr

In our work we concentrated on the influence of environmental conditions on the longlivety of the UHF RFID tags used for labeling in one of the major sporting goods retailers-Decathlon. Decathlon sells more than 600 million individual products every year through a network of more than 1500 stores in Europe, Africa, South America and Asia [4].

Decathlon integrated their RFID solution in each step within their supply chain allowing enormous benefits of this strategy in their factories, distribution centers and stores. They started tagging all of their own branded products at the manufacturing plants already in 2013. The procedure included placement of RFID labels on items during the manufacturing process. Each RFID label was encoded with a unique identification number stored in the retailer's database.

Decathlon suppliers use handheld RFID readers inside their factories to record and track the transport of products to the distribution centers. The main advantage of RFID identification lies in the ability of making the tracking process easier and faster which in turn reduces the risk of error. Upon the arrival at a distribution center the products' ID is read from the RFID tag and recorded using fixed RFID readers, after which the products are stored for the picking process. Products that are not made by Decathlon and were not tagged at the factory are tagged with an RFID label at the distribution center. In total, more than 85% of products are RFID tagged [5].

Regarding the operation of RFID labels, they are printed and afterwards encoded with a unique identification number. Once the products that were tagged during production are received and the other branded products have been RFID tagged, several types of RFID systems, including mobile readers and RFID reading tunnels, are used to perform cycle counts and shipping control. Decathlon can ensure that the right products are shipped to the right stores.

Upon the arrival at the store, the products are placed on display shelves ready and available for consumers. Store personnel use an RFID handheld reader connected by bluetooth to a smartphone in order to execute efficient shelf inventories which are almost five times faster than with the former systems and technologies. Decathlon keeps up with the wishes of the consumers by installing RFID based check-out systems in order to make the payment process quicker and easier. The system consists of an RFID reader embedded into the check-out table. When a customer wishes to check-out, the cashier simply passes the products across the top of the table to read the product RFID ID encoded into the label without having to use a traditional barcode system [5]. The retailer also installed EAS-RFID gates at the stores entrance as a security measure. Namely, when passing through the gates, RFID tags are detected, so the system can check if the products have been purchased or not, and then alert the security staff.

Storage conditions were the RFID labeled products are held can very drastically with respect to the geographical location of the store, quality of the storage building as well as unexpected extreme conditions during transport. In that sense the question arises in what way the environmental changes, especially elevated temperature and UV radiation impact the quality of the UHF RFID label

2. MATERIALS AND METHODS

In our research we will examine passive UHF RFID tags. Namely, Decathlon uses the Tageos 100% paperbased passive UHF RFID tags. The labels have been specifically designed for Decathlon in order to match the various types and sizes of product items to be tagged. Two types of tags were analyzed. For simplicity, we will label them as Tag 1 and Tag 2. They come in a specific format as a double sticker. General characteristics are the same for both tags. They operate in ETSI 865–868 MHz frequency under EPC Class 1 Gen 2 protocol. Antenna is made out of aluminum. Front face material is white printable paper while the adhesive used is solvent-free permanent acrylic adhesive [6,7].

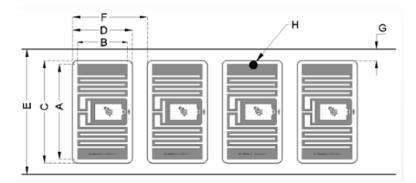


Figure 7. Tag 1[6]

Table 1.Dimensions of tag 1[6]

Dimensions	A x B	C x D	Ε	F	G	Н
Description	Antenna size	Label size	Web width	Pitch	Die-cut to web edge	Bad mark
Metric/mm	38 x 20	41 x 24	50	30 ± 0.5	4.5	4

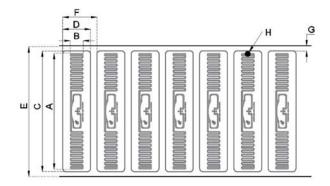


Figure 2. A sample line graph using colors which contrast well both on screen and on a black-and-white hardcopy[7]

Dimensions	A x B	C x D	Е	F	G	Н
Description	Antenna size	Label size	Web width	Pitch	Die-cut to web edge	Bad mark
Metric/mm	71 x 8	74 x 17	80	21 ± 0.5	3	4

Samples were exposed to electromagnetic radiation in Cofomegra Solarbox 3000 Xenon Test Chamber. (artificial aging for 48h and 96h) according to ISO standard. Also, given the very high temperatures in which the labels/products are stored and transported, we also tested the effect of the elevated temperature, 50 °C and 60 °C, respectively, by exposing the samples in the "Kottermann" air chamber Type 2306 for 48 h and 96 h at 40% relative humidity.

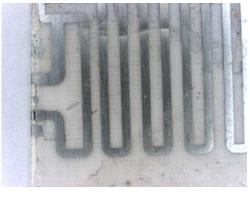
Changes in the conductivity and read range frequency of the UHF RFID label antennas were determined according to the research presented in [2].

From the measurements conductivity was computed according to

$$=rac{l}{R't'w}$$

where l stands for length, w width, t depicts thickness and R is the resistance obtained from current voltage measurement.

In order to get an insight into the degree of degradation, image analysis of the samples was performed with the Personal IAS imaging device. It consists of a measurement head housing a high performance digital camera and an optical modules. The justification for using an analysis device has been discussed earlier in numerous articles [8,9]. The standard optical arrangement is 45/0 geometry, typical for reflective, densitometric measurements. PIAS-II analysis results are displayed in both numerical and graphical form. The user can display contours, bounding boxes, center marks, and ROIs for the image features analyzed.


3. RESULTS AND DISCUSSION

σ =

Exposure of the tags to elevated temperatures and UV radiation had no impact on the read range regardless of the tag type. Also, no change in the conductivity of the antennas in both tag types were detected. Mean value of the conductivity of all tags, before and after the experiment, corresponds to $\sigma=(3.3\pm0.2)\cdot10^7$ S·m⁻¹ indicating electric stability of UHF RFID tags.

Even though the tags showed great electric stability, image analysis indicated changes related to degradation of front face material which is white printable paper and the adhesion of the tags solvent-free permanent acrylic adhesive. In Fig. 3. pictures of Tag 1 after exposure to UV radiation for 48 h and 96 h are given. Degradation of the adhesive is evident, resulting in exposed antenna.

(1)

Figure 8. (a) Tag 1 after exposure to UV radiation for 48h

(b) Tag 1 after exposure to UV radiation for 96h

Table 3. Summary of the results obtained by Pias for Tag 1 after exposure to UV radiation for 48h

Line Summary	Mean	Min	Max	Stdv
Width / mm	0.713	0.645	0.781	0.03
Min width/mm	0.62	0.403	0.756	0.123
Max width / mm	0.87	0.832	0.928	0.033
Std Dev Width / mm	0.053	0.018	0.114	0.033
Fill	0.973	0.971	0.975	0.03
Contrast	0.502	0.429	0.554	0.052
Density	0.475	0.43	0.504	0.027
Reflectance	0.336	0.313	0.372	0.021

If we compare the summary of the results obtained by Pias for Tag 1 given it tables 3 and 4 it can be seen that the mean line width corresponds to 0.71 mm in both cases. Line fill, contrast and density dropped slightly, while the reflectance increased all of which corresponds to the removal of the adhesive layer from the label. The lack of the adhesive may eventually cause the label to drop from the product which means that products should be handled with care in case of any increased exposure to UV radiation in transport and storage.

Tag 2 showed less pronounced changes in the appereance in respect to the exposure to elevated temperatures (Fig. 5. And Fig. 6.) that can occur during the transportation process. The level of degradation to the adhesion layer and paper substrate was significitally lower compared to degradation caused by UV radiation which means that the products are relatively well protected in closed dark compartments during the transport process. Degradation of the paper base and the adhesive, although undeniably present, are not the cause for concern when considering label decay.

Table 4. Summary of the results obtained by Pias for Tag 1 after exposure to UV radiation for 96h

Line Summary	Mean	Min	Max	Stdv
Width / mm	0.712	0.641	0.783	0.153
Min width/mm	0.023	0	0.047	0.014
Max width /				
mm	1.002	0.709	1.589	0.245
Std Dev Width				
/ mm	0.188	0.122	0.354	0.067
Fill	0.963	0.908	0.987	0.028
Contrast	0.489	0.295	0.589	0.107
Density	0.427	0.274	0.519	0.092
Reflectance	0.383	0.302	0.532	0.085

Figure 4. (a) Tag 2 after exposure to $50^{\circ}C$

(b) Tag 2 after exposure to 60°C

If the data obtained by Pias for Tag 2 (Table 5 and Table 6) are closely inspected, it can be seen that the values for fill and contrast decrease for 3 % and 6 % when the temperature is increased from 50°C to 60° C. At the same time the value of density dropped for 11 % while the reflectance increased for 11 %.

Table 5. Summary of the results obtained by Pias for Tag 2 after exposure to 50°C

Line Summary	Mean	Min	Max	Stdv
Width / mm	0.276	0.231	0.31	0.028
Min width/mm Max width /	0.059	0.015	0.135	0.04
mm	0.511	0.331	0.7	0.146

Std Dev Width				
/ mm	0.104	0.08	0.14	0.019
Fill	0.973	0.925	1	0.029
Contrast	0.502	0.453	0.588	0.044
Density	0.479	0.402	0.554	0.051
Reflectance	0.334	0.279	0.396	0.039

Table 6. Summary of the results obtained by Pias for Tag 2 after exposure to 60°C

Line Summary	Mean	Min	Max	Stdv
Width / mm	0.262	0.212	0.284	0.024
Min width/mm	0.077	0.026	0.187	0.052
Max width /				
mm	0.356	0.324	0.405	0.027
Std Dev Width				
/ mm	0.084	0.033	0.108	0.025
Fill	0.948	0.829	1	0.06
Contrast	0.436	0.282	0.558	0.102
Density	0.366	0.234	0.492	0.094
Reflectance	0.44	0.322	0.583	0.096

Although the layer of paper has largely remained fixed to the antenna it is obvious that this inequality in surface coverage in respect of the amount of adhesive and paper affects the changes in density and reflectance.

4. CONCLUSION

In our research we examined the influence of UV radiation and elevated temperature on two types of UHF RFID labels commercially used in one of the worldwide present sporting products retailers. Our results showed that the exposure of RFID UHF labels to electromagnetic radiation had no influence on the read range and conductivity of the UHF RFID tags. At the same time image analysis showed the decrease in the longlivity of the adhesion between the RFID tag and the substrate. UHF RFID tags show satisfactory quality in regard to their electrical properties, but there is a place for improvement in the substrate/adhesion materials.

It is evident that there are multiple advantages and benefits of using RFID tags as labels. One of the key points are the upgrades in inventory tracking in connection much faster and more efficient inventory. No less important, timely procurement and redistribution of products from distribution centers to stores was made timely. Thanks to the RFID tagging of every product, a full store inventory can be performed as often as necessary with a rather small number of personnel. Any improvements in the quality of the adhesive and tag substrate will only improve this process even more as it will mean a smaller amount of destroyed / damaged labels.

REFERENCES

- M. Keskilammi, L. Syda nheimo and M. Kivikoski, "Radio Frequency Technology for Automated Manufacturing andLogistics Control. Part 1: Passive RFID Systems and the Effects of Antenna Parameters on Operational Distance", Int J Adv Manuf Technol, vol. 21, pp. 769–774, 2003.
- [2]. Chi Weng, "902-928MHz UHF RFID Tag Antenna Design, Fabrication and Test," M. Eng. thesis, Faculty of California Polytechnic State University, San Luis Obispo, USA, Aug. 2011.
- [3]. A. Thorne, "The physics behind RFID", RFID journal, Vol. 2, No. 2, Apr. 2004.
- [4]. Decathlon uses Tageos RFID labels to identify millions of items worldwide. Available: https://www.cisper.nl/en/case-studies/decathlon-uses-tageos-rfid-labels-to-identify-millions-of-items-worldwide
- [5]. B. Violino, "Decathlon Scores a Big Win With RFID," RFID journal, Vol. 13, No. 3, May/Jun. 2016.

- [6]. EOS-250 data sheet, [Online]. Available: <u>https://www.cisper.nl/datasheets/tageos/Tageos-Datasheet-EOS-250.pdf</u> tag1
- [7]. EOS-430 data sheet, [Online]. Available: <u>https://www.cisper.nl/en/tageos-eos-430-nxp-ucode-8-74x17mm-white-paper</u> tag2
- [8]. J.C. Briggs, M.K. Tse, "Objective Print Quality Analysis and The Portable Personal IAS[®] Image Analysis System", Journal of the Imaging Society of Japan, 158, 99-107, 2005.
- [9]. M.K. Tse, "IAS-II[™] A High-Performance Portable Tool for Print Quality Analysis Anytime, Anywhere", Quality Engineering Associates (QEA), Inc, 2007

UI GreenMetric Ranking Performance Analysis of Universities in Turkey: Suggestions Towards to Becoming Green Campuses

Kadriye Elif Macin¹

Abstract

There is growing attention to UI GreenMetric from all over the world since it was established in 2010. Turkey totally have 207 universities and 43 of them was applied to UI GreenMetric in 2019. The aim of this study is to analyse UI GreenMetric ranking performance of universities in Turkey and giving suggestions towards to becoming green campuses. The data used in the study were taken from the UI GreenMetric's official website. According to the results; the most successful category was transportation (TR) while the unsuccessful categories were "energy and climate (EC)" and "water (WR)" in Turkey. In addition, 72% of the applicant universities have not ranked in the first 300. The rankings of universities in Turkey have been decreased according to the general ranking results. The major problems are lack of sustainability offices and inability to provide instutional data for the application. Institutional data keeping, monitoring system and targeting global indicator such as Sustainable Development Goals were suggested in order to become green campuses.

Keywords: Green campus, Higher Education Institutions (HEIs), Sustainable Development Goals (SDGs), Sustainability, UI GreenMetric.

1. INTRODUCTION

The importance of education, especially universities to reach Sustainable Development Goals (SDGs) have been discussing since last four decades [1]. Universities are an impartial and reliable stakeholder in society. Hence, universities have the capacity and responsibility to guide SDGs at local, national and international level through dialogue and partnerships [1]. The relationship between the education sector and sustainability officially started with the Stockholm Declaration in 1972. Later, universities have made a commitment to address this issue more comprehensively with the Talloires Declaration. Universities stated that they would take measures to reduce the damage to the environment [2]. After the 1992 United Nations conference, the concepts of sustainable universities and green campus started to gain importance (**Figure 1**). Although there is no single general definition exist, "green university" concept sometimes perceive as one-dimensional since current applications give more importance to environmental topics and neglecting economic and social aspects. However, the multidimensional nature of the term green campus should be taken into consideration [3-5]. Hence, it would be more accurate to evaluate and associate the "green campus" concept with "sustainable university". A sustainable university is defined as a higher education institution that deals with minimizing the negative environmental, economic, social and health impacts at a regional or global level, caused by the use of its resources during fulfilling the functions of teaching, research, social assistance and partnership [6-7].

University campuses are complex systems in which education and research processes are carried out by consuming materials, energy and water [8]. In China, the education sector is responsible for 40% of the total electricity consumption in the public sector [3]. Therefore, studies have been gaining attention to reduce anthropogenic effects on campuses [9]. In addition to their academic achievements and reputations, universities are competing to reduce the human impact on environmental problems such as climate change.

¹Corresponding author: Istanbul Technical University, Department of Environmental Engineering, 34469, Maslak/Istanbul, Turkey, macin@itu.edu.tr

*Adapted from (Tan et al., 2014) study.

Figure 1. Important developments regarding the "green campus"

It is known that university rankings have become popular in recent years [10]. The ranking topics ranging from research, education and academic reputation to environmental performance [10]. In most university rankings, research and academic reputation rank first and followed by education while environmental issues have little or no attention [10-11]. The UI GreenMetric ranking is an important initiative that makes an international assessment of the sustainability of universities [10]. UI GreenMetric was created in 2010 by the University of Indonesia and it consists of six main categories which are Setting & Infrastructure (%15), Energy & Climate (%21), Waste (%18), Water (%10), Transportation (%18) and Education (%18) as shown in **Table 1** [12]. UI GreenMetric has been a ranking system that constantly renews itself over the years and has received positive [7] and negative [13] comments with this feature. The theme of 2020 is stated as "SDGs and universities responsibility for the challenges in the world" [5].

Table 1.	UI (GreenMetric	categories	and scores
----------	------	-------------	------------	------------

Categories	Total Score	Percentage (%)
Setting & Infrastructure (SI)	1500	15
Energy & Climate (EC)	2100	21
Waste (WS)	1800	18
Water (WR)	1000	10
Transportation (TR)	1800	18
Education (ED)	1800	18

The increase in the number of applications to UI GreenMetric has led to an increase in academic publications. (**Ragazzi and Ghidini, 2017**) conducted analyzes and made suggestions on how the ranking system could be improved [13]. (**Marrone et al., 2018**) stated changes are necessary, especially in the setting and infrastructure (SI) category [14]. (**Muñoz-Suárez et al., 2020**), analyzed academic ranking success and sustainability relations by comparing UI GreenMetric with the results of other academic ranking systems [15]. (**Caeiro et al., 2020**), evaluated the results of different ranking systems including UI-GreenMetric, in order to understand the effects of universities on sustainable development [16]. (**Sonetti et al, 2016**) compared the UI GreenMetric performances of two universities in Italy and Japan [7]. (**Puertas and Marti, 2019**) evaluated the UI GreenMetric results with cluster analysis and divided them into different sustainability classes [17]. In addition, UI GreenMetric performance anaylsis of universities from different countries such as Africa [4], Brazil [18], India [19], the Philippines [20], and Russia [9] were done.

UI GreenMetric is also popular in Turkey as well as all over the world since it has accepted applications without any preconditions and free of charge. Bilkent University has been the only university from Turkey to participate since the 2010. Zonguldak Bulent Ecevit University (ZBEU) applied for the first time in 2014 and started to take an active role in GreenMetric and became the representative of Turkey for UI GreenMetric. ZBEU ranked first in Turkey in 2014, 2015 and 2016. Istanbul Technical University (ITU), which applied for the first time in 2017, ranked first in Turkey in 2017, 2018 and 2019. An international workshop was held at Istanbul University

Hybrid Conference 7th INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT October 13-17 2021

with the participation of the UI GreenMetric team in 2017 [21]. National workshop was organized by ZBEU in 2019 to discuss problems faced during and after application [22]. The increasing interest in UI GreenMetric by universities in Turkey has led to university-specific case studies [23-24] and the development of local sustainable university models [25]. Many publications have been made in Turkey from the perspective of ecological campuses [26] and green building certification systems [27-29]. General evaluation of UI GreenMetric for the year 2015 was made at national level [25]. The master thesis were done about green campus [30] and national green campus ranking system suggestion based on GreenMetric [31]. In addition, five state and five private universities from Turkey compared in terms of their sustainable-ecological parameters [32]. Besides, YOK (higher education board of Turkey) has new initiatives about the Green Metric.

While there were 29 universities in Turkey in 1987, this number increased to 207 in 2019 [33-34]. Today, 7.9 million students, including graduates, study in higher education institutions in Turkey. The increasing number of students in the last 35 years is an important opportunity for the establishment of environmental management and sustainability systems in universities. Considering the approximately 10% of the country's population is educated in higher education institutions and 21% of universities in Turkey applied to UI GreenMetric in 2019 are clarified the importance of the subject. Despite the increasing interest in the UI GreenMetric system in Turkey, no study on national performance analysis has been found during literature research. A new study is needed when factors such as the increasing number of UI GreenMetric applications, YOK's interest in this subject and universities' role on SDGs. The aim of this study is to examine the UI GreenMetric performances of universities in Turkey and to give suggestions to become green universities.

2. MATERIAL AND METHOD

2.1. Material

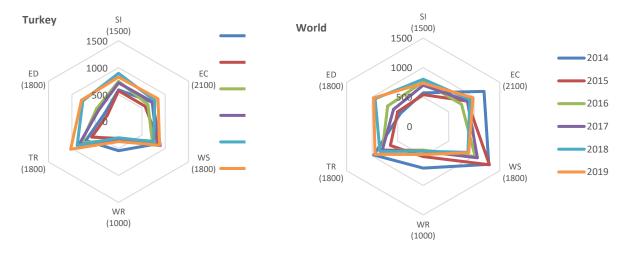
The data required to review and compare UI GreenMetric performances were taken from the UI GreenMetric website. Detailed information about the green campus projects of the universities applying UI Green Metric from Turkey were obtained from the official websites of the universities. In addition, the number of academic publications containing the term "green campus" was obtained from the Web of Science (WoS) [35].

2.2. Method

In the study, a literature search was conducted using Web of Science (WoS), Scopus, Google Scholar, Dergipark and YOK Thesis Center search engines. The national and international studies were examined by using the keywords "green campus", "GreenMetric", "sustainable development" and "university". UI GreenMetric shares category and continent based results since 2014 and 2017 respectively. Therefore, the category reviews were made for the years 2014-2019 and analyzes of the continents were made for the years 2017-2019. The UI GreenMetric results between 2010 and 2019 were compared in order to understand how the performances of universities in Turkey have changed in the general ranking and in the country. Also, it has been tried to determine whether there is a relationship between the performance of the countries that are successful in UI GreenMetric and academic interest (number of publications) by examining the academic studies that include the word "green campus" in WoS. Suggestions were made to become a green campus by evaluating the interviews held at the ZBEU national workshop and using the literature resources.

3. RESULTS AND DISCUSSION

3.1. Academic publications and successful countries in the UI GreenMetric ranking


In order to understand whether the number of academic publications is an effective parameter on the country's UI GreenMetric performance, apart from the development level of the countries, the publications including the word "green campus" in WoS were examined. There is no direct relationship between publications and ranking, have been found however some positive effects were observed. For example, one of the most publishing countries in Europe is the United Kingdom and it has the most universities in the top 20. Similarly, in the Asian continent, the universities in the top 20 are generally from China, Malaysia, Indonesia and Taiwan, which have more publications compared to other Asian countries. A total of 983 papers (article, conference paper, book chapter, etc.) containing the term green campus was published between 1996-2020. The number of publications has started to increase rapidly and reached the highest point with 140 publications in 2017. The most

publications were made in the USA and China with 249 and 163 publications respectively. Turkey is the 11th country with the highest number of publications with 29 publications containing the term "green campus" [35]. This is promising for future national success and performance. The effect of the UI GreenMetric ranking system, on the number of publications with the terms "green campus" and "sustainable university" is a significant topic to be addressed in the future.

3.2. Overall ranking performance by categories

In order to examine the performances of universities in Turkey, the average of the scores between the years 2014-2019 were calculated. The same calculations were made with the overall results for comparison (**Figure 2**). According to the average results of Turkey in 2019, the "transportation (TR)" category was the most successful category with an average score of 1027 (57% of the total score of the category). The average of the "Setting & Infrastructure (SI)" category is 824 (55%), while "Waste (WS) category is 879 (48.8), "Education (ED)" category is 794 (44.1%), "Energy and Climate (EC)" category is 845 (40.3%) and "Water (WR)" category is 370 (37%).

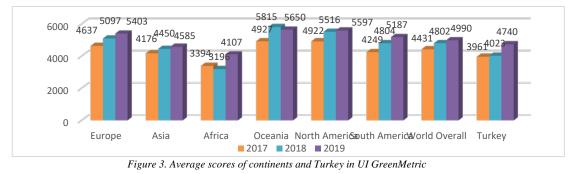
*SI: Setting & Infrastructure, EC: Energy & Climate, WS: Waste, WR: Water, TR: Transportation, ED: Education

Figure 2. Change of category average scores in Turkey and world general ranking in 2014-2019

The highest increase is seen in the "Education (ED)" category (from 16.6% in 2014 to 44.1% in 2019), while a decrease in the "Water (WR)" category (from 2014 to 54.1% to % 37.0% in 2019). In the "Waste (WS)" category, there was an increase in performance across the country between 2018 and 2019. This is due to the Zero Waste Regulation published in the country. In addition, performance changes can be observed due to changes in UI GreenMetric indicators as well as the activities of universities. According to the 2019 UI GreenMetric guide, although there is no change in the questions in the "Structure and Infrastructure (SI)" category, the options for the questions "*1.9. Area covered with vegetation in the form of forest in the campus (%)*" and "*1.10. "Cultivated vegetation area (%) within the campus*" have been changed. This change, which required universities to have more green spaces in order to get the same score as the previous year, caused the performance of 842 points (56.1%) in 2018 to decrease to 824 points (55%) in 2019. This shows that universities should have a more comprehensive sustainability vision rather than just setting targets according to UI GreenMetric indicators. When the same results are examined for world universities, the most successful category was "Education (ED)" with 971 points (53.9%) and the most unsuccessful category was "Energy and Climate (EC)" with an average score of 974 (46.4%). After success in 2014 and 2015, the waste (WS) category has declined rapidly in the last four years.

Table 2. UI GreenMetric average scores of universities in Turkey in 2019

Ranking	SI	EC	WS	WR	TR	ED	Total
	(1500)	(2100)	(1800)	(1000)	(1800)	(1800)	(10000)
1-99	1050	1150	1575	800	1425	1600	7600
100-199	983	1183	1075	625	1225	1275	6367
200-299	969	1031	1050	384	1281	984	5700
300-399	908	883	988	421	1096	913	5208
400-499	771	896	911	421	889	632	4521
500-599	759	741	834	225	931	650	4141
600-699	678	590	563	290	855	575	3550


* SI: Setting & Infrastructure, EC: Energy & Climate, WS: Waste, WR: Water, TR: Transportation, ED: Education

The average score of Turkey 2019 is shown in **Table 2**. The university performance in the top 300 in the world rankings, performed close to each other except for the Water (WR) and Education (ED) categories. Although the universities ranked among the top 300 and 500 are more successful than the upper ranking range in the Water (WR) category, they lagged behind, especially due to their performance in the Setting and Infrastructure (SI), Transportation (TR) and Education (ED) categories. Universities ranked among the top 600 and 700 should draw attention to their low performance in Waste (WS) and Energy and Climate (EC) categories.

3.3. Comparison of university scores in Turkey with the average scores of the continents

A total of 780 universities applied to the UI GreenMetric ranking system in 2019. The number of universities applying from the Asian continent is 373 (48%), the European continent is 229 (29%), the South American continent is 95 (12%), the North American continent is 64 (8%), the African continent is 14 (2%), and the Oceania continent is 4 (1%). It is no coincidence that UI GreenMetric was founded by the Asian country (Indonesia) and received more applications from the Asian continent. It is also known that since the beginning of the 2000s, there has been an increasing interest in green campus studies, especially in China, Malaysia, Taiwan and Indonesia [36-37].

The requirement for specifying universities which continents they belong to can cause confusion in a country that has connections to more than one continent like Turkey. Although only 8 of the 43 universities applying from Turkey are geographically located in the European continent, 25 universities chose Europe as the continent in 2019. The remaining 18 universities chose the Asian continent. UI GreenMetric has been sharing the results by continents since 2017 (Figure 3). According to this, although the average score of the universities in Turkey has increased over the years. It has lagged behind the world average and other continents except for Asia and Africa. (Muñoz-Suárez et al., 2020) stated that new universities (founded within the last 100 centuries) predominate among the top 500 universities in UI GreenMetric [15]. They explained as the Asian universities were dominant in the first 500 and these universities were generally established in the last century and the performance of Turkey is compatible with this theory.

3.4 Change of UI GreenMetric performance of universities in Turkey over the years

UI GreenMetric has received increasing attention from Turkey since its establishment. The number of applied universities has increased rapidly in the last three years and it was constant only in 2012.

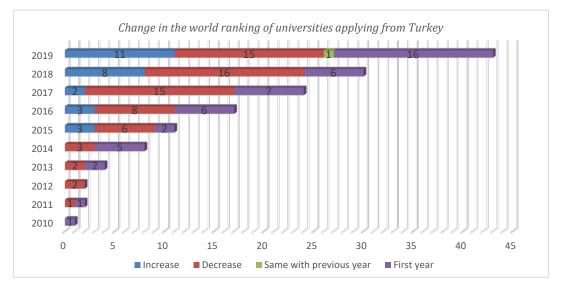
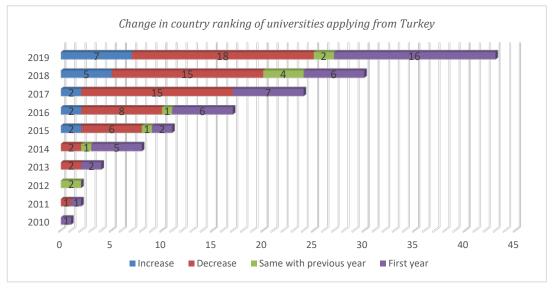


Table 3 III	GreenMetric	rankinas	of univer	sities in	Turkey
<i>Tuble 5. 01</i>	Greenmeinic	rankings	oj univer	suies u	іликеу

					, ,					
Ranking	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
1-99	1	-	-	-		-	-	1	1	1
100-199	-	2	1	-	-	-	1	2	2	3
200-299	-	-	1	4	4	4	4	4	5	8
300-399	-	-	-	-	4	6	7	5	5	6
400-499	-	-	-	-	-	1	5	6	6	7
500-599	-	-	-	-	-	-	-	5	5	8
600-699	-	-	-	-	-	-	-	1	6	10
Number of universities (Turkey)	1	2	2	4	8	11	17	24	30	43
Number of universities (Total)	95	178	215	301	361	407	516	619	719	780

Universities that ranked in the top 100 in Turkey are Bilkent University, which applied in the year UI GreenMetric was first published, and ITU. As seen in **Table 3**, there are four universities in the top 200 and twelve universities in the top 300 in 2019. The remaining 31 universities (72%) are in the 300-700 range. Results also shows university performances in Turkey vary widely. Results shown in **Figure 4** and **Figure 5** over the years in order to understand the overall performance change in the country according to these most of the universities have a decreasing trend in the general ranking. The number of universities with lower ranking ternd in the UI GreenMetric ranking in 2017, 2018 and 2019 was respectively 15, 16 and 15 while increasing rankings were respectively 2, 8 and 11. Although the average scores have increased over the years, their place in the ranking is decreasing (**Figure 4**). This is due to the increase in average scores at other universities applying for the UI GreenMetric ranking. As (**Ragazzi and Ghidini, 2017**) and (**Macin et. al., 2020**) mentioned, the absence of any sustainability classification in UI GreenMetric may cause the ranking change depending on the performance of other universities, although the university performance in terms of sustainability does not change [13]-[38].



*Inonu University did not apply in 2014. Therefore, the years 2013 and 2015 were compared.

Figure 4. Change in the world ranking of universities applying from Turkey between 2010-2019

Although the total scores of 14 universities in the national ranking and 13 universities in the general ranking increased, their rankings decreased in 2018. These numbers were changed to 9 (in national ranking of Turkey) and 7 (in the world) in 2019.

* Inonu University did not apply in 2014. Therefore, the years 2013 and 2015 were compared.

Figure 5. Change in country ranking of universities applying from Turkey between 2010-2019

4. PROBLEMS AND SUGGESTIONS TOWARDS TO BECOMING GREEN CAMPUSES

At the national workshop held by ZBEU, the problems faced by universities in Turkey during and after the UI GreenMetric application process were discussed. In this section, suggestions are made to be more successful in UI GreenMetric and how to serve the SDGs in order to become sustainable universities in the long term.

- Obtaining "institutional data" is one of the challenges faced by universities in Turkey. Considering the concept of a sustainable university in a broader perspective, **"sustainability offices**" are recommended [39]. Sustainability offices are necessary for universities to realize their sustainability visions, to acquire the habit of keeping data and to carry out multi-disciplinary studies. The office should regularly publish sustainability reports. One of the duties of the sustainability office is to keep this data on a regular basis. If it is not possible to establish an office in the short and medium term, a relevant unit of the university restaurant should be appointed. It will be useful for this unit to keep basic information regularly, such as electricity, water and natural gas consumption, the number and areas of buildings on the campus, the number of vehicles on the campus, the list of projects carried out and partnered with the university. Many universities in America and Europe are developing their projects under the management of "sustainability offices", including universities in top 20 ranking of Green Metric. In addition, Asian universities have been interested in this subject and have achieved successful results [40].
- Organizing activities related to green areas in the campus with the participation of internal stakeholders were suggested for the **Setting and Infrastructure (SI)** category. (**Caeiro et al., 2020**) stated that stakeholder participation is important in adopting SDGs and becoming a green campus [16]. Increasing green areas with the help of non-profit organizations (NGOs) will also be beneficial in terms of creating social awareness.
- Performance of universities in Turkey follow closely the top 20 universities in the world ranking, especially in Education (ED), Setting and Infrastructure (SI) categories. However, they are clearly behind in the Energy and Climate (EC) category. Renewable energy and smart building topics come to the fore and future projects and investments should focus on these projects. New projects should meet the energy needs of the campus from renewable energy sources by considering that the main

purpose is to reduce energy consumption and carbon footprint. However, the effects of these projects will be understood in the medium and long term and they will be relatively costly.

Hybrid Conference

- In the Waste (WS) and Water (WR) categories, cooperation between the local government and the university is necessary. As mentioned in (Amaral et. al., 2020), sustainability studies that use "topdown" and "bottom-up" approaches at the same time are more successful [41]. Studies are generally carried out with a "top down" approach in Turkey. One of the important example is Zero Waste project [42]. Waste category results were increased in 2019 because many universities have started composting applications [43-44] after the Zero Waste Regulation. It is possible to implement projects similar to zero waste, on issues such as water recycling and use of renewable energy but the support of the state and local governments is required. Furthermore, YOK added UI GreenMetric as an indicator to the "General Report of University Monitoring and Evaluation" [45]. This development is very important in terms of discussing how state and local governments can contribute to green campus practices. Waste and water consumption can be reduced by training and campaigns to be carried out within the university. For example, research conducted at Rhodes University has shown that knowing how much waste is produced in dining halls can reduce the amount of food waste [46]. It is possible to reduce the use of plastic bottles by placing water dispensers in different parts of the campus [47]. Grey water use may increase for universities in Turkey and rainwater harvesting is also feasible [31].
- In particular, it would be beneficial for universities ranked low in Table 3 to produce projects in categories such as **Transportation (TR)** and **Education (ED)** that do not require any cost on campus, but will enable them to take action more easily on the way to becoming a green campus. The publication of guidelines that will reduce the number of vehicles entering the campus and highlight the comfort of pedestrians will ensure more success in the Transportation (TR) category without any cost.
- In the Education (ED) category, projects should be developed on topics such as sustainability, green economy, and biotechnology, which gain attention today. Academic publications and university stakeholders should take a more active role. Thanks to internal surveys, trainings and the active role of student clubs, it will be possible for universities to engage in sustainability activities with all internal stakeholders. While discussing, during the Covid-19 proces, the question of whether distance education (and/or blending education) will dominate the future without a campus education [48], embracing sustainable university concept is essential. Therefore, universities should include courses containing "SDGs" in their curriculum within the scope of being sustainable institutions. In addition, education should cover to other stakeholders of the campus other than students [2].

5. CONCLUSION

UI GreenMetric has been developed to better understanding of sustainability in education, to bring green projects in agenda of higher education institutions, to be more effective in reaching the SDG, to compare the initiatives of institutions on campus sustainability and to keep universities informed from each other. The number of newly applied universities to UI GreenMetric increases every year, but the rankings decreases. 72% of the universities applying from Turkey did not ranked in the top 300 and the most unsuccessful categories across the country were Water (WR) and Energy and Climate (EC) in 2019. The major problems are coming from lack of sustainability offices and inability to provide data for the application. However, GreenMetric indicators do not capture specific factors such as the level of development in the country or stakeholder participation. Universities in developing countries sometimes do not receive adequate support from local governments for basic needs such as waste management, water treatment and transportation. This causes a part of the budget for sustainability to be allocated to basic needs and prevents equal conditions between universities. This shows that it is necessary to focus on global and long-term goals, rather than just UI GreenMetric indicators. Furthermore, solutions climate change mitigation depend on the success of small-scale projects such as university campuses. Although it is not possible to reach the SDGs in the short term, it is understood from the number of universities applying to UI GreenMetric that universities in Turkey volunteer to support sustainable development. The universities in Turkey should make short, medium and long-term plans within the framework of the sustainable vision with the support of state and local governments.

ACKNOWLEDGMENT

The author would like to thank Merve Macin for her support during the research and valuable comments on the manuscript.

REFERENCES

- SDSN Avustralya/Pasifik. (2017). Getting started with the SDGs in universities: A guide for universities, higher education institutions, and the academic sector. Australia, New Zealand and Pacific Edition. Sustainable Development SolutionsNetwork – Australia/Pacific, Melbourne. [Online]. Available: http://ap-unsdsn.org/wpcontent/uploads/University-SDG-Guide_web.pdf
- [2]. Koester R.J. Eflin J. and Vann J. "Greening of the campus: a whole-systems approach", *Journal of Cleaner Production*, 14, pp.769-779, 2006.
- [3]. Yuan, X., Zuo, J. and Huisingh, D. "Green universities in China–what matters?" Journal of Cleaner Production, 61, 36–45, 2013.
- [4]. Ali E.B. and Anufriev V.P. "UI GreenMetric and campus sustainability: a review of the role of African universities". International Journal of Energy Production and Management., vol 5. (1), 2020a.
- [5]. UI GreenMetric (2020). Basvuru Kilavuzu, [Online]. Available: <u>http://greenmetric.ui.ac.id/wp-content/uploads/2020/09/UI GreenMetric Guideline 2020 English Rev.2.pdf</u>
- [6]. Hordijk, I. "Position paper on sustainable universities". Journal of Cleaner Production, 14, pp.810–81, 2014.
- [7]. Sonetti G., Lombardi P. and Chelleri L. "True green and sustainable university campuses? Toward a clusters approach". Sustainability, 8, 83, 2016.
- [8]. Alshuwaikhat, H.M. and Abubakar, I. "An integrated approach to achieving campus sustainability: assessment of the current campus environmental management practices". *Journal of Cleaner Production*. vol 16, pp.1777-1785, 2008.
- [9]. Ali E.B. and Anufriev V.P. "Towards environmental sustainability in Russia: evidence from green universities", *Heliyon* 6 -04719, 2020b.
- [10]. Suwartha N. and Sari R.F. "Evaluating UI GreenMetric as a tool to support green universities development: assessment of the year 2011 ranking". Journal of Cleaner Production. vol.61, pp.46-53, 2013.
- [11]. Alrashed S. "Key performance indicators for Smart Campus and Microgrid". Sustainable Cities and Society. Vol 60, 02264, 2020.
- [12]. UI GreenMetric (2021). UI GreenMetric Guidelines 2021 English, [Online]. Available: https://greenmetric.ui.ac.id/publications/guidelines/2021/english
- [13]. Ragazzi, M. and Ghidini, F. (Environmental sustainability of universities: critical analysis of a green ranking International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, Energy Procedia 111–120, April. 2017,
- [14]. Marrone P., Federico O., Asdrubali F. and Guattari, C. "Environmental performance of universities: Proposal for implementing campus urban morphology as an evaluation parameter in Green Metric". *Sustainable Cities and Society*, 42, pp.226-239, 2018.
- [15]. Muñoz-Suárez M., Guadalajara N., José M. and Osca, A. "Comparative Analysis between Global University Rankings and Environmental Sustainability of Universities", *Sustainability*, 12, 5759, 2020.
- [16]. Caeiro S. Angélica L. Hamón S., Martins R. and Bayas Aldaz C.E. "Sustainability Assessment and Benchmarking in Higher Education Institutions—A Critical Reflection". *Sustainability* 12, 543, 2020.
- [17]. Puertas R. and Marti L. "Sustainability in Universities: DEA-GreenMetric", Sustainability 11, 3766, 2019.
- [18]. Drahein, A.D.; De Lima, E.P. and Da Costa, S.E. "Sustainability assessment of the service operations at sevenhigher education in Brazil". *Journal of Cleaner Production.* 2, 212, pp.527–536, 2019.
- [19]. Parvez N. and Agrawal A. "Assessment of sustainable development in technical higher education institutes of India". *Journal of Cleaner Production*, 214, pp.975-994, 2019.
- [20]. Cuaresma, J.C. "How Green Can You Go? Initiatives of Dark Green Universities in the Philippines". Ed. Filho W.L. pp.165,191, 2019.
- [21]. Istanbul University, (2017). Uluslararasi GreenMetric Calistayi Istanbul Universitesi Ev Sahipliginde Gerceklestirildi. [Online]. Available: https://www.istanbul.edu.tr/tr/haber/uluslararasi-greenmetric-calistayi-istanbul-universitesi-evsahipliginde-gercekl-610063002D0035004400760073005A005A00350073003100 (16.9. 2020)
- [22]. Zonguldak Bulent Ecevit University –ZBEU (2019). GreenMetric Turkiye Ulusal Calistayi [Online]. Available: https://greenmetrics.beun.edu.tr/calistay/greenmetric-turkiye-ulusal-calistayi.html
- [23]. Benliay A. and Gezer N.B. "Universite Yerleskeleri Icin Cevresel Surdurulebilirlik Dizinleri: Akdeniz Universitesi Ornegi", *Peyzaj Egitim, Bilim, Kultur ve Sanat Dergisi* 2, pp.40-49, 2019.
 [24]. Daglioglu S.T., Sertkaya S., Kinal A., Bor M. and Ayaz D. "The Evoluation Of Green University Ranking- A Case
- [24]. Daglioglu S.T., Sertkaya S., Kinal A., Bor M. and Ayaz D. "The Evoluation Of Green University Ranking- A Case Study Ege University", Greenmetric, 2018.
- [25]. Agi Gunerhan and S., Gunerhan, H., "Turkiye Icin Surdurulebilir Universite Modeli", *Muhendis ve Makina*, vol 57, (682), pp.54-62, 2016.

- [26]. Kurtaslan, B.O. "Examination of Selcuk University Alaaddin Keykubat Campus in the context of ecological landscape design". Journal of Environmental Biology, 2020.
- [27]. Erten D. "Green Campus Development And Greening Existing University Campuses: Case Studies From Turkey". International Sustainable Buildings Conference II, (ISBS), Ankara, Turkiye, 2015.
- [28]. Kose-Mutlu, B., Arslanoglu, Z. O., Gunacti, B., Say, B., Sahin F., Yilmaz, C. and Yardimci-Tiryakioglu, N. "Uluslararasi Yesil Bina Sertifika Sistemlerinin Incelenmesi ve Tasarlanan Ulusal Sertifika Sisteminin Kullanimi: Bir Kampus Binasi ile Vaka Calismasi, *Iklim Degisikligi ve Cevre*, 4, (2) pp.32–41, 2019.
- [29]. Arat Y. and Kacar A. "Surdurulebilir Binalara Yesil Ergonomi Cercevesinden Bir Bakis: Konya Gida ve Tarim Universitesi Kampusu". *Ergonomics* 3(1), pp.18 – 32, 2020.
- [30]. Okutan P. "Green Campus Application: Bogazici University", Master Thesis. Bogazici University, 2019.
- [31]. Ozdogan B. "Universite Yerleskeleri Icin Cevresel Surdurulebilirlik Endeksinin Tanimlanmasi", Master Thesis, Suleyman Demirel University, Isparta, 2018.
- [32]. Kayapinar-Kaya S., Dal M. and Askin, A. "Turkiye'deki devlet ve vakif universite kampuslerinin surdurulebilirekolojik parametreleri acisindan karsilastirilmasi". Fen Biimleri. Enstitu Dergisi, 2018.
- [33]. Karakul A. "Educating labour force for a green economy and renewable energy jobs in Turkey: Aquantitave approach", *Renewable and Sustainable Energy Reviews* 63, pp.568–578, 2016.
- [34]. Yuksekogretim Kurulu (Higher Education Board in English)-YOK, (2019). Turlerine gore mevcut universite sayisi [Online]. Available: <u>https://istatistik.yok.gov.tr/</u>
- [35]. Web of science- WoS, (2020). [Online]. Available: https://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=1&SID=E34HkWtST9pX7RhnmQD&s earch_mode=AdvancedSearch&update_back2search_link_param=yes
- [36]. Tan H., Chen S., Qian Shi, Wang L. "Development of green campus in China". Journal of Cleaner Production, 64, 646-653, 2014.
- [37]. Lauder, A S, Suwartha R.F., Tjahjono N. and Gunawan. "Critical review of a global campus sustainability ranking: GreenMetric", *Journal of Cleaner Production*. 108, pp. 852-863, 2015.
- [38]. Macin K. E., Arikan O. A., Demir I The UI GreenMetric Ranking System: Analyzing Impacts of Categories on Overall Results. 6th International Conference on sustainable Development, 4 - 06 November, pp.1-10, 2020.
- [39]. Velazquez, L., Munguia, N., Platt, A. and Taddei, J. "Sustainable university: what can be the matter?" Journal of Cleaner Production, 14, 810-819, 2006.
- [40]. Zen I.S, Deivendran S., Hanizam S., Saleh A.L., Omar W. and Salim M. R. "Institutionalize waste minimization governance towards campus sustainability: A case study of Green Office initiatives in Universiti Teknologi Malaysia". *Journal of Cleaner Production.*,135, 1407-1422, 2016.
- [41]. Amaral A.R, Rodrigues E., Gaspar A.R. and Gomes A., "A review of empirical data of sustainability initiatives in university campus operations". *Journal of Cleaner Production*, vol 250, 119558, 2020.
- [42]. T.C. Cevre ve Sehircilik Bakanligi –CSB, (2019). Sifir Atik Yonetmeligi <u>https://www.resmigazete.gov.tr/eskiler/2019/07/20190712-9.htm</u>
- [43]. Pamukkale University -PAU (2019). PAU, Cevreye Duyarli Projeleri Hayata Gecirmeye Devam Ediyor [Online]. Available: http://haber.pau.edu.tr/tr/Haber/pau-cevreye-duyarli-projeleri-hayata-gecirmeye-devam-ediyor (5 .9. 2020).
- [44]. Yildiz Techinal University -YTU, (2019). Sifir Atik Calismalari [Online]. Available: http://sifiratik.yildiz.edu.tr/sifiratik-calismalarimiz/kompost/
- [45]. Yuksekogretim Kurulu (Higher Education Board in English) -YOK, (2020).Universite Izleme ve Degerlendirme Genel Raporu 2019. [Online]. Available: https://www.yok.gov.tr/Documents/Yayinlar/Yayinlarimiz/2020/universite-izlemeve-degerlendirme-genel-raporu-2019.pdf
- [46]. Painter, K., Thondhlana, G. and Kua, H. Food waste generation and potential in- terventions at Rhodes University, South Africa. Waste Management. 56, pp.491-497, 2016.
- [47]. Saleem M, Blaisi NI, Alshamrani OSD and Al-Barjis A. "Fundamental investigation of solid waste generation and disposal behaviour in higher education institute in the Kingdom of Saudi Arabia". *Indoor and Built Environment*, 28(7), 927-937, 2019.
- [48]. Yaylali Yildiz B. "Bir Yasam Alani Olarak Universite Kampusleri", Arredamento Mimarlik, 106,112, 2020.

Advanced quality and sustainability when printing irreversible thermochromic inks

Rahela Kulčar¹, Marina Vukoje¹, Petra Ćurković¹, Katarina Itrić Ivanda¹

Abstract

Worldwide, there is a growing need for use of recyclable and biodegradable materials, made from natural resources, for a variety of applications. This trend is followed by the printing industry as well, which is trying to use environmentally friendly materials and reduce the consumption of environmentally unfriendly materials. In addition, the used materials should give the satisfying quality of the end-product. Thermochromic inks can be reversible (color change is multiple) or irreversible (color change is one-time and permanent). Irreversible printing inks are initially either colorless or colored and when exposed to high temperatures they get colored or change to another color. Therefore, the aim of this paper is to examine the possibilities of two printing substrates (uncoated and coated) for the application of irreversible thermochromic inks in order to find a more environmentally friendly option that gives a satisfactory print quality. The dynamics of color change was monitored through one heating cycle every few degrees. Their colorimetric characteristics were described using spectral reflection curves and the CIELAB color system. Based on the obtained results, it can be concluded that with the change of temperature, the color tone changes slowly and continuously. The differences are evident for the selected printing substrates due to their different properties. However, these variations are imperceptible to the eye of the observer and according to the obtained results, it can be concluded that the tested inks behave similarly on the used substrates. In addition, more environmentally sustainable materials can be a good option in the use of printing with irreversible water-based thermochromic inks.

Keywords: thermochromic inks, sustainable materials, colorimetric characteristics

1. INTRODUCTION

During distribution, storage and before the sale in stores, food products are exposed to various external influences that adversely affect their quality. Their premature deterioration causes large amounts of waste and thus financial losses. The validity date of the product in these cases cannot serve as a guarantee of product freshness, and due to the non-transparency of some packaging materials without opening the packaging itself, it is not possible to visually determine whether the product is still safe for consumption.

Intelligent packaging can be defined as packaging that contains an external or internal indicator that provides information about changes to which the product has been exposed over time. This type of smart packaging can detect and record internal and external changes in the production environment [1]–[3]. Chromogenic materials respond to an external stimulus by changing color. [4]. Nowadays, the use of chromogenic printing inks in the field of intelligent packaging is growing. In this area, they apply to indicator labels that make intelligent packaging "intelligent".

Thermochromic inks can be divided according to the type of color change into reversible and irreversible inks. Reversible inks return to their original state after a period of exposure to an external stimulus, while irreversible inks retain their color change without returning to the original color [5]–[7].

¹Corresponding author: University of Zagreb, Faculty of Graphic Arts, Getaldiceva 2, 10000 Zagreb, Croatia rahela.kulcar@grf.unizg.hr

Some researchers are of opinion that only the reversible changes should be included in terms of thermochromism because irreversible color changes caused by heating are, for the most part, only the results of true chemical reactions, and for that reason do not require special terminology. Closer studies reveal that the situations are in many cases not so simple and clear. The mechanism responsible for the thermochromism of organic compounds varies with the molecular structure of the compound. The color change is the result of equilibrium changes, either between two molecular species or between different crystal structures or between stereoisomers [8].

Thermochromic inks are mostly used for the production of time-temperature indicators. In this way, it is possible to visually determine whether the product has been exposed to an inadequate temperature. They are widely used in industrial applications for observing heat patterns and for detecting high and low-temperature points on surfaces of heat engines, pipelines and refrigerations fins. Thermochromic pigments have reached widespread use through different industries, including the textile industry, printing technology, military applications, plastic industry, industrial and interior design, etc. [8]–[11].

Printing inks for printing such indicators should adhere well to the label material or to the packaging material (if they are printed directly on the packaging itself). In addition, it is important that they are stable when printed and that they do not react prematurely to changes in temperature, light, etc [12], [13]. Also, it is very important that when a product is exposed to adverse conditions, the color change remains irreversible in order to obtain accurate information about the condition of the product.

The eco-friendly paper has a smaller environmental impact and carbon footprint. Mostly, when taking about environmentally friendly paper, recycled paper and FSC certificated paper are considered. Paper for printing may be coated or uncoated. The main purpose of paper coating is to improve the surface quality, optical properties (brightness, gloss or opacity), smoothness, and the most important - printability and print image quality [14]. When printing coated papers, printing ink sits on top of the paper, rather than being absorbed. On the contrary, when printing uncoated porous paper, the printing ink is absorbed deeper into the paper structure resulting in duller print. In the case of coated paper, the color of the prints is brighter and more vibrant to the eye [14]. Uncoated papers are considered as environmental friendlier than coated papers because they yield a higher percentage of fiber for recycling. In addition, the clay coating also creates a greater amount of sludge that must be disposed of.

This paper aims to examine the possibilities of two printing substrates (uncoated and coated) for the application of irreversible thermochromic inks to find a more environmentally friendly option that gives a satisfactory print quality. To analyze the quality of the printed ink, a colorimetric color analysis will be performed to monitor the color path through the heating process and to compare the color characteristics on both tested substrates.

2. EXPERIMENTAL PART

Two different types of papers, coated and uncoated, were used as a substrate in printing trials to find a more environmentally friendly option that gives a satisfactory print quality. Uncoated paper (UN) is matt wood-free printing paper grammage $100g/m^2$ and the other is $70g/m^2$ cellulose coated paper (CO).

Also, two commercially available screen-printing thermochromic (TC) inks were used for printing. Both inks were water-based irreversible TC inks with different activation temperatures.

MG60 was TC ink with an activation temperature of 60°C. At this temperature, the color begins an irreversible change from light pink to magenta. The second color used, IR75, has an activation temperature of 75°C and at that temperature it begins its change from colorless to pink. The third color used, MIX60/75, was a mixture of these two TC colors.

The printing trials were carried out using a semi-automatic screen-printing device (Holzschuher K.G., Wuppertal), employing 62/64 mesh for MG60 and 120 mesh for IR75. The samples were printed in full tone.

Spectral reflectance was measured by using Ocean Optics USB2000+ spectrometer using a 30 mm wide integrating sphere under (8:di) measuring geometry (diffuse geometry, a specular component included). The printed samples were heated on the full-cover water block (EK Water Blocks, EKWB d.o.o. Slovenia).

A different initial temperature was set for each sample, depending on its activation temperature. After reaching a certain temperature, a sample was placed on the circulator plate and an integration sphere was placed on it.

Reflectance spectra were measured in one heating cycle. The measurements were performed in the steps of 1 nm for the spectral region from 400 to 700 nm. Ocean Optics SpectraSuite software was used for the calculation of the CIELAB values from measured reflectance. The D50 illuminant and 2° standard observer were applied in these calculations.

3. RESULTS AND DISCUSSION

In order to show thermochromic color changes through temperature change, measurements were performed in temperature cycles depending on the activation temperatures of irreversible TC inks. Using the spectral reflection curves and the CIELAB color system, the color changes on both paper substrates were displayed. The results are presented in graphs showing the spectral reflection curves at different measured temperatures. On the MG60 sample, color change was monitored from 40°C to 80°C. Sample measurements were mostly performed every 2°C, and around the activation temperature every 1°C in order to more accurately monitor the color change on the sample. On the IR75 sample, color change was recorded from 65°C to 82°C every 1°C.

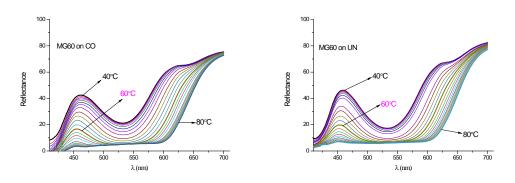


Figure 9. Spectral reflectance curves of irreversible MG60 on coated (CO) and uncoated (UN) paper substrates

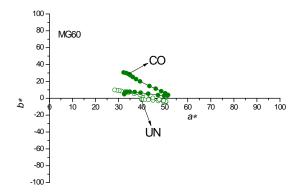


Figure 2. Changing of CIELAB values of MG60 sample in the (a^*,b^*) plane during heating on both paper substrates

Figure 3. CIELAB lightness L* of MG60 in dependence on temperature during heating on both papers

Figure 1 shows the spectral reflection curves of the printed irreversible color MG60 on both papers. There is a similar trend of change on both paper samples. At the initial measurement temperature, 40°C, on both substrates, the curves are almost identical. The reflection decreases with increasing temperature and the curves narrow, i.e. at higher temperatures the differences are less noticeable and the color retains the same color characteristics. Although the activation temperature is at 60°C, the color at higher temperatures becomes more intense and the color saturation increases, which can be seen at the a*/b* graph. The MG60 on both substrates has a similar color change path during heating (Figure 2). Figure 3 shows a decrease in the brightness L* even before the activation temperature.

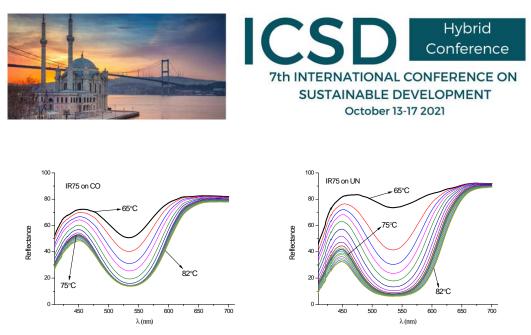


Figure 4. Spectral reflectance curves of irreversible IR75 on coated (CO) and uncoated (UN) paper substrates

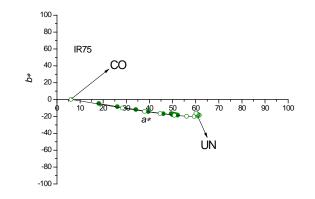


Figure 5. Changing of CIELAB values of IR75 in the (a^*,b^*) plane during heating on both paper substrates

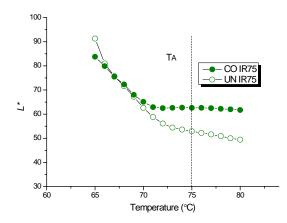


Figure 6. CIELAB lightness L* of IR75 in dependence on temperature during heating on both papers

30

The IR75 inks has a slightly different trend of change on the examined papers. At the initial measurement temperature, 65° C, the difference between the spectral reflection curves on these two substrates is most noticeable (Figure 4). The reason for this is probably that uncoated paper has higher whiteness. Since the IR75 ink is colorless before an irreversible change occurs, the initial spectral reflection curve is higher on that paper. Based on the a^*/b^* graph (Figure 5), the IR75 on both papers has an almost identical color change path during heating. On the L^*/T graph (Figure 6), the difference between the two prints is more noticeable and the color is more saturated on the uncoated paper. Also, as with the MG60, it can be observed that the irreversible change started even before the activation temperature and this is the same on both paper substrates.

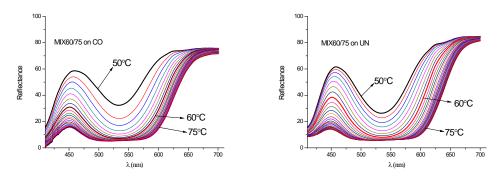


Figure 7. Spectral reflectance curves of MIX60/75 on coated (CO) and uncoated (UN) paper substrates

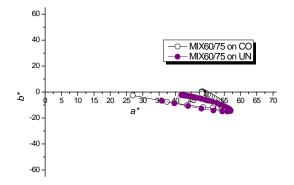


Figure 8. Changing of CIELAB values of MIX60/75 in the (a*,b*) plane during heating on both paper substrates

The MIX60/75 sample is a combination of two tested colors in a 50:50 ratio. Because of their different characteristics, the goal was to determine the differences in prints with respect to the different characteristics of the paper. It can be concluded that the color path is not completely identical, however, the changes are relatively small and quite imperceptible to the eye of the observer as shown in Figures 7 and 8.

4. CONCLUSION

In this paper, the print quality of two irreversible thermochromic inks on two different types of paper was examined in order to establish the assumption that environmentally sustainable materials can be a good option for their printing, in this case, uncoated paper due to higher fiber yield. Coated papers, compared to uncoated, have lower ink demand, i.e. the ink penetration into the paper sheet is smaller. Therefore, the ink does not spread as much, and the print image is clear and sharp resulting in enhanced print density and the print gloss.

Comparing the obtained measurement results for selected thermochromic inks, it can be concluded that by changing the temperature the hue of both TC inks changes slowly and continuously on both paper substrates.

Although the values are not completely identical, these variations are imperceptible to the eye of the observer. Larger differences were observed on the IR75, which is also affected by the color of the paper substrate due to the initial colorless condition. These differences disappear after the TC color changes irreversibly.

From the L */T graph it can be noticed that the thermochromic reaction (color change) occurred even before the activation temperature itself and that at higher temperatures both TC inks become more saturated. The mix of the two tested TC inks on the same substrates also shows very small differences and the changes are similar to each of these two colors.

Even though paper coating increases printability and print image quality, based on this work, it can be concluded that the tested TC inks behave similarly on coated and uncoated paper. In addition, more environmentally sustainable materials (uncoated papers) can be a good option for printing with irreversible thermochromic inks.

In the following research, it is planned to include a larger number of environmentally friendly materials in order to monitor their stability to some external conditions and to determine the impact of the substrate on the stability of TC inks.

ACKNOWLEDGMENT

The authors are grateful for the financial support of the University of Zagreb.

REFERENCES

- [1] G. A. Skinner, Smart labelling of foods and beverages. Woodhead Publishing Limited, 2015.
- [2] P. Bamfield and M. G. Hutchings, Chromic Phenomena, 2nd Editio. 2010.
- [3] M. White and M. LeBlanc, "Thermochromism in commercial products," J. Chem. Educ., vol. 76, no. 9, pp. 3–7, 1999.
- [4] S. Rossi, M. Simeoni, and A. Quaranta, "Behavior of chromogenic pigments and influence of binder in organic smart coatings," *Dye. Pigment.*, vol. 184, no. September 2020, p. 108879, 2021.
- [5] R. Kulčar, M. K. Gunde, and N. Knešaurek, "Dynamic Colour Possibilities and Functional Properties of Thermochromic Printing Inks," Acta Graph., vol. 23, pp. 25–36, 2012.
- [6] D. C. MacLaren and M. a. White, "Design rules for reversible thermochromic mixtures," J. Mater. Sci., vol. 40, no. 3, pp. 669–676, Feb. 2005.
- [7] R. Kulčar, M. Friškovec, N. Hauptman, A. Vesel, and M. K. Gunde, "Colorimetric properties of reversible thermochromic printing inks," *Dye. Pigment.*, vol. 86, no. 3, pp. 271–277, Aug. 2010.
- [8] V. Michal and A. Periyasamy Prince, *Chromic Materials Fundamentals, Measurements, and Applications*. Oakville: Apple Academic Press, 2019.
- [9] J. Homola, "Color-changing inks," AccessScience, 2008.
- [10] L. Worbin, "Designing Dynamic Textile Pattern," University of Gothenburg, Sweden, 2010.
- [11] V. Granadeiro, M. Almeida, T. Souto, V. Leal, J. Machado, and A. Mendes, "Thermochromic paints on external surfaces: Impact assessment for a residential building through thermal and energy simulation," *Energies*, vol. 13, no. 8, 2020.
- [12] R. Urbas, R. Milošević, N. Kašiković, Ž. Pavlović, and U. S. Elesini, "Microcapsules application in graphic arts industry: a review on the state-of-the-art," *Iran. Polym. J.*, pp. 1–21, 2017.
- [13] M. Friškovec, R. Kulčar, and M. K. Gunde, "Light fastness and high-temperature stability of thermochromic printing inks," *Color. Technol.*, vol. 129, no. 3, pp. 214–222, 2013.
- [14] H. Holik, Ed., Handbook of Paper and Board, 2nd ed. Wiley VCH, 2013.

Biography: Assistant Professor Rahela Kulčar has been employed at the Faculty of Graphic Arts, University of Zagreb since 2004. At the same faculty she defended her doctoral dissertation entitled "Colorimetric analysis and stability parameters of UV-thermochromic printing inks" in 2010. She has been working as an assistant professor since 2017 and at the moment she is the holder of two courses at the undergraduate study, "Photographic Processes" and "Qualitative methods of testing color reproduction". Her areas of interest are inks, photography, colorimetry, and factors that influence different color perception. In the field of photography, her focus is primarily on analogue photography and alternative photographic techniques. In the field of inks, these are thermochromic inks, their stability to various external influences, and the interaction of inks and paper. Current research is focused on the influence of physico-chemical properties of printing media on the colorimetric properties of thermochromic prints and their impact on UV stability.

Use of Structural Equation Modeling to Develop a Sustainable Hunting Scale

Yasar Selman Gultekin¹, Ugurcan Oztokat²

Abstract

Ensuring the sustainability of hunting and wildlife, by identifying hunter profiles with different characteristics in Turkey; it can be possible by analyzing the perceptions and attitudes of hunters regarding hunting and the continuity of wildlife. The aim of this study is to develop a sustainable hunting scale with structural equation modeling in order to determine the perceptions and attitudes of hunters about the sustainability of hunting and wildlife. In order to achieve this aim, it is aimed to determine the basic components of sustainable hunting by using Confirmatory Factor Analysis and Structural Equation Modeling in the method of the study by obtaining data with structured and closed-ended questionnaires to be developed with hunters with hunting certificates. Within the scope of the study, the studies on sustainable hunting to bring policy suggestions to decision makers and practitioners with the scale that can be developed.

Keywords: Sustainable hunting, Hunter's associations, Scale development, Confirmatory factor analysis

1. INTRODUCTION

Hunting is an activity that has emerged with the effort of meeting the basic needs of human beings and has its own rules over time. Hunting is defined as activities carried out with the aim of capturing an animal alive or dead for different purposes [1]. When hunting activities is planned well, it provides benefits for providing the sustainability of natural resources and bringing environmental, economic and social concerns together. The place of local people in hunting planning and management is quite important in terms of the contribution of income that is obtained from protection works and activities on regional economy [2].

Hunting emerges as a way of life beyond being a culture and tradition in Turkey. In order to ensure the sustainability of hunting and wildlife, determining the behavior of hunters, especially their training, has a crucial place [3].

Interest in structural model analysis for relational studies is increasing in the social sciences discipline. Structural Equation Modeling (SEM) methodology is a robust statistical analysis technique consisting of a combination of manifest and latent variables that are used in many areas such as psychology, sociology, education, economics and marketing. SEM is an effective model testing and development technique that can explain the cause-and-effect relationship of variables in mixed hypotheses related to statistical models and allows the theoretical models to be tested as whole.

The aim of this study is to conduct sustainable hunting scale to identify stakeholders' perceptions and attitudes of against to their hunting activities, and to discuss the availability of SEM as a new approach to the provide recommendations to existing hunting problems. The SEM methodology is an untested method in sustainable

¹Corresponding author: Duzce University, Department of Forest Engineering, 81620, Konuralp/Duzce, Turkey. <u>selmangultekin@duzce.edu.tr</u>

²General Directorate of Nature Conservation and National Parks, Mugla, Turkey, <u>uoztokat@gmail.com</u>

hunting planning and management in Turkey. It will be applied in sustainable hunting planning and will have an important place to cover some gap in the literature and studies on hunting for the future research.

1.1. Hunting and Sustainability

The hunting concept has evolved with the development of the hunting weapons of people as a result of their needs and expectations during centuries [4]. According to reference [5], the hunting concept comes to the agenda with the sustainability concept. Sustainable hunting, which is the basis of conservation of ecological balance, has emerged as a result of sustainable development. European Commission (EC) launched a European Union (EU) "Sustainable Hunting Initiative" in order to improve the understanding of the legal and technical aspects on hunting and to develop a program of scientific, conservation and awareness raising measures to promote sustainable hunting [6].

The sustainable use of natural resources ensure that biodiversity remains in balance. Sustainable hunting and wildlife management is related to planning the use of hunting and wildlife resources in a way that does not affect the use of future generations. Ensuring the sustainability of hunting can be possible with the sustainable management of the relationship between the hunter and the prey, as well as the natural resource management. [5]. The studies carried out in this context appears to have taken pay attention to the issues of preventing unconscious and excessive hunting, supporting rural development, ensuring the organization of hunters and their participation in resource management, determining the number of hunters according to hunting grounds and game animal species, providing self-control, providing financial support for protection and development in order to ensure sustainable hunting and wildlife [7].

Because sustainable hunting has a wide variety of elements, it is necessary to understand its structure. In order to ensure long-term sustainability of hunting, it is necessary to take into consideration the basic elements of the structure of this activity. The work and thought cooperation of local people, decision-makers, private sector, NGO's and scientists, crucial stakeholders of wildlife planning and sustainable hunting, is a process that can be applied and facilitated.

1.2. Structural Equation Modelling

Structural Equation Modeling (SEM) is an analyzing method in use of many fields such as psychology, sociology, education, economics and marketing. SEM is composed of multivariate statistical methods [8]. It is seen that the use of SEM is limited in the field of hunting planning and wildlife management, against to many studies made in different branches of science by using SEM in Turkey [9] [10] [11]. It can be possible to use of SEM as a new method in the field of hunting management in literature. SEM is basically based on the researcher's thoughts related to a research topic by testing a model of inter-variable relationships that existed before studies are done through data obtained in the research result. The most significant difference between methods such as variance analysis (ANOVA), multivariate analysis of variance (MANOVA), factor analysis (FA), regression analysis, which are the most used statistical methods in SEM [12]. The main objective of the SEM is to explain the interdependency relationship pattern between the one or more observed variables and the implicit non-observable sets of structures. Three main components of the SEM [13]. These components are path analysis, conceptual synthesis of structural models and measurement models, and finally general estimation processes. Development of SEM should be addressed through some statistical concepts on a historical level. These analyzes are regression analysis, path analysis, confirmatory factor analysis (CFA) and SEM [14].

The concept of CFA emerged in the 1950s. Karl Joreskog developed the CFA in 1960 with his theoretical studies of whether or not the data set of a defined structure could be tested. FA is used to construct measurement instruments whereas CFA is used to test the existence of theoretical structures [14].

SEM is mainly a general statistical methodology. SEM uses path diagrams to show basic models in causal relationships. SEM was first recognized as "JKW" models because it was developed by Karl Joreskog, Keesling and Wiley. It was later used as "Linear Structural Equation Models" with the development of the LISREL (Linear Structural Relations) program [15]. [16] states that it would be better to call it "Factor Analytical Structural Equation Models" (FASEM) because SEM is based on FA. However, only the SEM concept has been used in recent years due to the use of nonlinear structural equation models [16].

There are two parts the measurement and the structural model in most general form of SEM. The measurement model specifies how the latent variables or theoretical structures are related to the observed variables and how they are represented. The structural model identifies the causal relationships between latent variables and describes causal effects [8] (Figure 1).

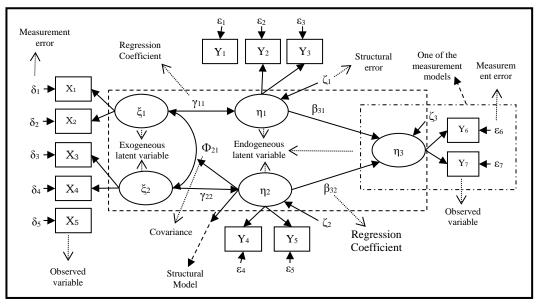


Figure 1. A Typical Structural Equation Model Demonstration [17]

When SEM model is tested many different criteria are used in evaluating the significance of the developed model. These measures are defined as goodness of fit values. There are many statistical functions related to this goodness of fit indexes. Commonly used indexes in SEM are Similarity ratios between chi-square statistics (χ 2), Root-Mean-Square Error Approximation (RMSEA), Goodness-of-Fit Index (GFI) and Adjusted Goodness-of-Fit Index (AGFI) [14].

Other fit measurement values of SEM include Parsimony Normed Fit Index (PFI), Goodness of Fit Index (GFI), Comparative Fit Index (CFI), Incremental Fit Index (IFI), Relative Fit Index (RFI) [13]. Researchers using SEM often use GFI, AGFI, RMSEA, CFI, and NNFI criteria as well as chi-square values in their studies [11]. In the AMOS analysis, the AIK (Akaike Information Criterion), CAIC (Consistent Akaike Information Criterion) and ECVI (Expected Cross Validation Index) model comparison indexes are used in addition to these criteria [10]. Table 1 summarizes the most commonly used metrics for evaluating the suitability of the SEM and the data for these metrics.

Table 1. Goodnes	s of fit values in	1 SEM [8]	[10] [15].
------------------	--------------------	-----------	------------

Fit Indexes	Good fit	Acceptable fit
General Model Fit		
χ^2	$0 \le \chi^2 \le 2sd$	$2sd \le \chi^2 \le 3 sd$
(χ^2/sd)	$0 \le \chi^2/sd \le 3$	$3 \le \chi^2/sd \le 4-5$
Comparative Fit Indexes		
NFI	≥0,95	0,94-0,90
NNFI	≥0,95	0,94-0,90
IFI	≥0,95	0,94-0,90
CFI	≥0,97	≥0,95
RMSEA	≤0,05	0,06-0,08
Absolute Fit Indexes		
GFI	≥0,90	0,89-0,85
AGFI	≥0,90	0,89-0,85
Conservative Fit Indexes		

PNFI	≥0,95	-
PGFI	≥0,95	-
Root Mean Based Fit Indexes		
RMR	≤0,05	0,06-0,08
Model Comparison Fit Indexes		
AIC		Smaller values than the compared model
CAIC		Smaller values than the compared model
ECVI		Smaller values than the compared model

2. MATERIALS AND METHODS

The data obtained by scanning the studies on hunting and SEM studies are the theoretical models that can be used in hunting planning and hunting management studies. SEM methodology is used in analyzing the views, thoughts, perceptions, attitudes and perspectives of the stakeholder groups. SEM can be used as an analysis methodology in this respect. The views and perception on sustainable hunting of hunting stakeholders need to be holistically analyzed in sustainable hunting planning. SEM is used in some studies both on social and natural studies [1] [2] [3] [4] [5]. It is possible to transform the described factors obtained from studies related to hunting through SEM into a theoretical model.

3. RESULTS AND DISCUSSUION

When examined in related to hunting studies in Turkey, it is seen that stakeholder groups' perception about perception attitudes takes place [3] [18] [19]. Factors are effective in the sustainable hunting perception are the latent variables regarding the structural model, the essence of hunting, hunting culture, sustainable hunting, the hunting ethics, requirements of sustainable hunting, and sustainable hunting strategies.

In order to analyze the stakeholders of sustainable hunting by using SEM, the sustainable hunting perception (SHP) model which is theoretically developed according to related studies. There is related six factors can be described on SHP model: The essence of hunting (EH), The hunting culture (HC), Sustainable hunting (SH), The hunting ethics (HE), Requirements of sustainable hunting (RSH), Sustainable hunting strategies (SHS). According to main factors, studies related to the subject can be examined and the Sustainable Hunting Perception Measurement Model (Research Model) represented in Figure 2.

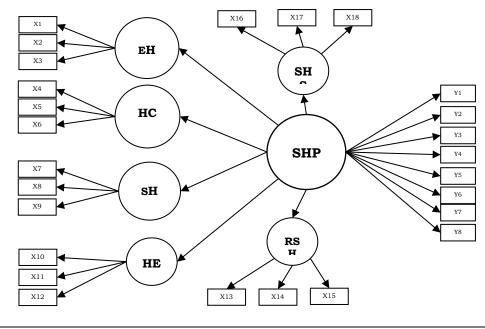


Figure 2. Theoretical research model of sustainable hunting perception (SHP)

4. CONCLUSION

SEM methodology has limited attention when it is used in the literature from studies done in the field of social sciences (10-20%). This rate is quite lower when compared the natural science studies in Turkey. In recent years, SEM has been used in very different scientific fields. Since the use of SEM in sustainable hunting is very limited in Turkey, the use of SEM in solving socio-economic problems and the continuing increase in such studies can provide significant contributions to the use of SEM in sustainable hunting and especially in solving socio-economic problems on this topic.

It can be possible to apply scientific studies to develop the stakeholders in place and to sustainable development by evaluating local potential with participatory hunting planning using SEM methodology. It will also be possible to obtain guidance on how the ecotourism sector should develop with different stakeholders in different land use policies and how it is likely to develop in future years.

It is possible to use SEM as a methodology for solving problems related to sustainable hunting management. However, the establishment of measurement and structural models requires a theoretical and statistical infrastructure to be done using SEM. If provide the appropriate conditions can meet, robust results will be obtained from the studies to be done in future research.

REFERENCES

- [1]. B. Dickson, J. Hutton, and W. M. Adams, *Recreational Hunting, Conservation and Rural Livelihoods: Science and Practice*, London, U.K: Blackwell Publishing Ltd., 2009.
- [2]. M. Alvard, "Shotguns and sustainable hunting in the Neotropics,". Oryx, vol. 29(1), pp. 58-66, 1995.
- [3]. U. Buyukarikan, "Analysis of hunter profile by hunter scale in Turkey," *Turkish Journal of Forestry*, 19(2), 163-169, 2018.
- [4]. Z. A. Aydin, "Determination of contributions to the national economy and expenditure trends of hunters (Istanbul case)," Institute of Graduate Studies in Science and Engineering Department of Forestry Engineering, Master Thesis, 128 p., Istanbul University, Istanbul, Turkey, 2015.
- [5]. DKMP, Sustainable Hunting Basic Education Book, Ankara, Turkey: General Directorate of Nature Conservation and National Parks, 2014.
- [6]. (2021) The EU website. [Online]. Available: <u>Sustainable Hunting Conservation Environment European</u> <u>Commission (europa.eu)</u>
- [7]. U. Geray, Forestry Institutions, Istanbul University, Faculty of Forest, Forestry Economics Department, 2001.
- [8]. V. Yilmaz, and H. E. Celik, Structural Equation Modeling with LISREL I, Ankara, Turkey: Pegem Academy, 186 p., 2009.
- [9]. B. Kayacan, and Y. S. Gultekin, Use of Structural Equation Modeling in Solving Socioeconomic Problems in Forestry, 3rd Socioeconomic Problems in Forestry Congress, Istanbul, Turkey, 2012.
- [10]. C. H. Meydan, and H. Sesen, Structural Equation Modeling (AMOS Applications), Ankara, Turkey: Detay Publishing, 2011.
- [11]. O. F. Simsek, Introduction to *Structural Equation Modeling (Basic principles and LISREL Applications, Ankara, Turkey: Ekinoks, 224 p., 2007.*
- [12]. H. Ayyildiz, and E. Cengiz, A Conceptual Evaluation on Marketing Models Testing Structural Equation Models (SEM). Suleyman Demirel University, Faculty of Economics and Administrative Sciences, 11(1), 63-84, 2006.
- [13]. R. H. Hoyle, Handbook of structural equation modeling, USA: The Guilford Press, 2012.
- [14]. R. E. Schumacker, and R. G. Lomax, A Beginner's Guide to Structural Equation Modeling, Second Edition, Mahwah, NJ, USA: Lawrence Erlbaum Associates, 498 p., 2004.
- [15]. R. B. Kline, Principles and Practices of Structural Equation Modeling, New York, USA: The Guilford Press, 2011.

[16]. P. M. Bentler, EQS 6 Structural Equations Program Manual, Encino, CA: Multivariate Software Inc., 2006.

- [17]. E., Rigdon, The Form of Structural Equation Models, Last updated: April 11, 1996, http://www.gsu.edu/~mkteer/sem2.html, (Access date: 07.02.2012), 1996.
- [18]. M. E. Bora, "Hunter education and hunter profile in Turkey", *Journal of Acta Turcica Online Thematic Turkology*, 1(1), 319-326, 2009.
- [19]. Z. Ay, F. Bilgin, I. Safak, and M. E. Akkas, "Determining the Profile of Licensed Hunters in Ege Region, Turkey", Ege Forestry Research Institute, Technical Bulletin, 259 (36), 1-47, 2004.

Digitalization of Farming and Sustainable Agricultural Development

Andriy Popovych¹

Abstract

Digitization is one of the most recent processes of transformation of world agriculture by overcoming existing environmental, economic and social problems and can be called the "third green revolution", since digital farming technologies allow to analyze and process large amounts of information, control and reduce production risks, meet the information needs of a wide range of stakeholders, from the state to the end consumer, as well as to ensure overall security. To answer the question of link between digitalization of the agricultural sector and sustainable development the article analyzes the potential of ICT technologies in agriculture, studies models of digital farming, considers the prospects for using digital economy tools in solving the problems of sustainable development of the agricultural sector. In particular, the article examines the advantages of ICT in terms of the rationality and sustainability of agriculture, provides an overview of the main technologies of intelligent farming in interaction with the infrastructure of the agricultural market. It also analyzes potential shortcomings, identifies barriers that impede the timely and large-scale implementation of information technologies in agricultural enterprises, limit the availability of the "digital revolution" in agriculture for small farmers and women, especially in developing countries. A practical analysis of this problem consists in conducting an economic and statistical analysis of the use of modern high-precision agricultural technologies in the vegetable growing industry. As a result of an econometric assessment of the data of small and medium-sized agricultural enterprises, the main factors of the existing development trends are identified and the main problems of sustainable development of subsectors are highlighted. The final model presupposes the development of an integrated approach to organizing sustainable development aimed at preserving natural landscapes, as well as improving scientific methods for environmental monitoring of agricultural lands and other areas that have not been effectively used

Keywords: agriculture, digitalization, information and communication technologies, sustainable development

1. INTRODUCTION

The digital economy is the future stage in the development of the global economic system due to the transformation of all spheres of human activity under the influence of information and telecommunication technologies. The spread of the Internet and other innovative technologies indicates the impossibility of ignoring their impact on the global economy in general and on its individual industries such as agriculture in particular.

Over the past decade, the priorities of the agricultural sector towards increasing its efficiency have changed to those based on up to date innovative solutions. Information and communication (ICT) technologies, which are usually understood as automation, informatization, digitalization, are being actively implemented today in all sectors of the economy, including agroindustry [1]. The purpose of introducing ICT in the agricultural sector

¹Berdyansk college of TSATA, Department of Management and Economics, 71108, Berdyansk, Ukraine. apopovych@kse.org.ua

is to increase the productivity of agricultural and processing enterprises by improving business processes with the help of innovative services [2].

"Digital agriculture" as it is often called implies the full-scale implementation of the digital economy, which consists of digital production technologies and robotic systems, as well as the commercialization and export of new scientific developments. The digital transformation of agriculture sector makes it possible to provide a technological breakthrough to farming to increase in capital and labor productivity at "digitalized" agricultural enterprises [1].

On the other hand, the modern paradigm of agricultural development presupposes both productive longevity and environmental sustainability with the preservation of habitat and focus on the optimal use of natural resources. It requires the deepening of the integration of ecology, crop production, livestock production and the business [2]. Achieving this level is possible with the gradual development of economic methods that ensure the relationship between natural and anthropogenic ecological systems and aimed at harmonizing the laws of ecology and economics [3].

The experience of the development of the agrarian sector testifies that as a result of the "technological revolution" classical extensive agriculture is being replaced by intensive and scientifically grounded. Information and satellite systems, multi-operational energy-saving agricultural units are widely used, considerable attention is paid to the selection of high-yielding varieties of agricultural crops, the creation of biologically active components for soil enrichment, new environmentally friendly means of combating weeds, pests and quarantine diseases of agricultural plants [4].

That is, there is a need for environmental management, which can develop on the basis of environmental entrepreneurship, one of the effective development directions of which can be the organization of environmental production of domestic high-quality products that solve food security problems. The main task of green management should be the creation of a management system that, on the one hand, reduces the impact of production technologies on the environment, and on the other, increases production efficiency [5]. The development of rural areas without the effective use of information capital is impossible as it contains valuable data relating to all areas of the economic entity and areas related to the sale, exchange, production of goods and services [4].

According to the generally accepted strategy, sustainable agriculture and the organization of agricultural landscapes should include regional specialization of agriculture, including the integrated use of land, the combined use of irrigated and non-irrigated lands, the development of land reclamation through the creation of various forms of plants, measures for the protection of biological diversity, and others [5]. Thus, the above theoretical substantiation of the greening process allows us to identify the factors that determine the technological and socio-economic basis of the organization of ecological agricultural production, ensuring its sustainable and effective development. It allows to solve the problems of increasing the environmental and economic efficiency of production by restoring, preserving and stimulating the natural cycle of substances destroyed by the processes of intensification of production, as well as maintaining the diminishing potential soil fertility and expanding reproduction due to the rational organization of agricultural land, the use of adaptive farming systems and improving the quality of products and increasing its competitiveness.

Ensuring the sustainability and manageability of agricultural land use is currently impossible to achieve without the use of the latest technologies and, first of all, digital. The most important direction of increasing the competitiveness and sustainable development of regional agri-food systems in the context of scientific and technological progress, the introduction of innovations is the widespread use of biological factors of economic growth: the achievements of genetics, breeding and seed production, new varieties and hybrids of plants that differ from their predecessors in higher indicators of potential yield, content in grain production of valuable nutrients, responsive to fertilizers, irrigation, drought resistance, immunity to diseases and pests. Digitization of agriculture is a prerequisite for achieving the effectiveness of the above-mentioned innovations [6].

2. OVERVIEW OF DIGITAL TECHNOLOGIES USED IN AGRICULTURE

"Digital economy" of the agricultural sector is a fully digitalized and automated production that is controlled by intelligent systems in real time, without human intervention, going beyond the boundaries of one enterprise, with the prospect of uniting into a global industrial network of things and services [7]. The information aspect

in the activities of an agricultural enterprise becomes an integral part of any business process, an indispensable condition for the operation of modern technology, a prerequisite for the successful organization of the production process itself and means of improving the quality of the workforce.

The list of the digital methods and techniques used in agriculture today includes but not limited to precision farming, smart farms, smart greenhouses, monitoring the use of agricultural machinery using satellite navigation systems (for example, GPS) and sensors, smart storage for vegetables and fruits, irrigation automation, electronic trading platforms for farmers, technical devices such as drones, which include both ground-based drones and unmanned aerial vehicles and copters, as well as winged drones, etc. The other technical devices of information technologies in agriculture are weather stations, soil moisture sensors and other special applications used to collect data from the environment and soil and transfer them to the cloud system at a given time interval.

The main function they perform include monitoring the state of agricultural crops, calculating index indicators of plant mass, estimating the future harvest, detecting disease-causing manifestations, weed plants, insect pests [7]. The software allows you to register and notify farmers via SMS messages about the spread of diseases and pests in certain areas, store historical data on key soil and crop parameters for each season, as well as general information about diseases, pests and plants. As a result of the use of such technologies by farms, operating costs are optimized and yields increase by an average of 15-20% due to a reduction in the volume of seeds, agrochemicals, fertilizers and water used, which are used strictly "on demand." [8]

Digitization in agriculture also provides an opportunity to create complex automated production and supply chains, covering retail chains, wholesale trading companies, logistics, agricultural producers and their suppliers in a single process with adaptive management [9]. The digital transformation scenario assumes a systemic, accelerated digitalization of agricultural production and integration with the areas of digital economy programs which dictates the need for the inclusive use of logistics cargo transportation, stimulating domestic consumption, developing product exports and building platforms that provide end-to-end digital solutions to create added value and ensure the competitiveness of agrarian business. In turn, the digitalization of commodity flows and production makes it possible to systematically accumulate trade lots for the export of agricultural products. This creates conditions for attracting private financing for the platforms and applications of agricultural producers, the active involvement of agricultural consulting services [8].

The creation of information and consulting services in helps rural producers to make better decisions for the development of production taking into account external factors. Advance information on the occurrence of adverse factors (weather conditions, the spread of pests and disease outbreaks, changes in the market situation) and possible risks must be carried out through developed information and communication technologies and automated information systems. Supporting business projects by assessing the effectiveness of new digital technologies, making recommendations for improving production, introducing innovative technologies and disseminating information about new developments allows farmers to keep abreast of modern advances and spend money not on traditional technologies, but to implement an innovative structure in the economy [10].

The movement towards the development of precision farming is the initial stage in the global reform of agricultural technologies. The introduction of satellite navigation in agriculture contributes to an effective assessment of the reliability of equipment, to collecting data on its condition, location and problems that may arise in the course of work. The satellite technologies is a large-scale production and resource-saving complex that provides for full control of transport facilities, fuel reserves and the adaptation of the system to a specific enterprise [11].

The implementation of digitalization contributes to the development of a new agricultural technology policy and growth in related industries: information and communication technologies, production of innovative agricultural equipment, as well as equipment for precision farming, biological products (plant protection products, stimulants and fertilizers), optimization of the use of mineral fertilizers and chemical plant protection products, reducing the impact on the environment, developing breeding and seed-growing centers, introducing new educational standards in training programs in agricultural universities and colleges, as well as in advanced training courses, professional service of agricultural consultants, optimizing the life cycle processes of the agricultural industry due to digitalization of processes [11]. For sustainable development of agriculture, concepts of organizational and economic potential and the global introduction of informatization, accumulating information resources and knowledge for effective economic management, are constantly being developed

making it possible to implement economic regulations for operating in specific conditions and to establish the processes of expanded reproduction of goods in all sectors of agriculture [12].

Furthermore, unified electronic systems are being formed that allow for full monitoring and analysis of the efficiency of agriculture in the country. This information system combines the subsystems used in the registration of farmers-producers of agricultural products, identification of land allotted for agricultural work, registration and identification of animals, their health and productivity. It also includes managing the application for financing for agricultural projects, the farmer lending system, as well as leasing operations and the registration of agricultural machinery. All these data will be sent online to a single processing center, which allows you to quickly identify problem areas in the agricultural sector and promptly make optimal decisions to improve the efficiency of the country's agriculture [13].

Distributed information processing technologies and cloud storage technologies also have high potential and obvious advantage in agriculture because of the ability to combine computing power to solve the most complex problems and implement modern highly efficient information systems, depending on current needs. The efficiency of collection, storage and processing of empirical data significantly increases when conducting research and analyzing the effectiveness of the use of certain agricultural technologies [14].

Agriculture is characterized to a greater extent by the automation of routine work, rather than the strengthening of the intellectual capabilities of managers. The most well-known technologies are implemented in the framework of applied computer programs to optimize the placement of crops in zonal systems of crop rotation and animal feeding rations, for calculating the doses of fertilizers, for carrying out a complex of land surveying and land management, for maintenance of the state cadaster of the history of fields and the development of technological maps for the cultivation of agricultural crops, for regulation of plant nutrition and microclimate in greenhouses, for control over the storage process of fruits and vegetables, the quality of cultivated products, soil pollution, for assessment of the economic efficiency of production, for management of technological processes in facilities of production and storage of raw products and foods and much more [13].

The use of geographic information systems (GIS) in crop production makes it possible to obtain more accurate data on the soil, on the peculiarities of sowing certain seeds or on the required amount of fertilizers, which makes it possible to increase the yield. For example, in the process of growing some crops, it is extremely important to observe a certain amount of seeds that must be planted on the site. This process can be monitored using special equipment that has information about the yield levels in different parts of the field over the past years. At the end of the harvest period, the device records the performance of each area. This data is then automatically sent to the geographic information system for further analysis and planning of the next sowing work. GIS allows you to regulate almost any calculations in crop production: they update and build maps of land, control the movement of agricultural machinery, process data and calculate technological operations [15].

Thus, the use of modern information and communication technologies is one of the main conditions for the effective development of agriculture. It is necessary to introduce and develop "e-agriculture", to train highly qualified IT specialists in the field of agriculture, to improve the knowledge and skills of small and medium-sized agricultural producers. In other words, information and telecommunication technologies should provide automated data exchange at the federal, district, regional and district levels [3]. At the same time, in many countries, primarily developing countries, agriculture lags far behind in the use of digital technologies in comparison with other sectors of the economy. If we compare the share of information and communication services in GDP, at present in the United States the indicator is 25%, in the EU countries - 15%, in developing countries - no more than 5% [16].

The progress of the process is slowed down by the existing problems of the countries based on social, economic, psychological and other prerequisites. The introduction of large-scale machine production faced a number of contradictions caused by the need to use a colossal amount of information and the impossibility of processing it using traditional technologies. The low threshold for informatization of society is explained by the psychological unpreparedness of the population for informatization, a low level of computer literacy, conservatism of the population and a lack of desire to accept innovations.

The slow introduction of ICT in agriculture of developing countries is due to the presence of such constraining factors as problems with the Internet (especially in remote regions), which makes it difficult to use software online, lack of financial resources for the implementation of information and communication technologies in

7th INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT October 13-17 2021

most agricultural producers, lack of digital literacy and digital skills among agricultural producers, low level of infrastructure provision for the implementation of digital technologies and platform solutions. Therefore, the main reasons for the lag in the development of digital agriculture are, firstly, the low share of coverage of the territory of the regions with the Internet and communications, secondly, the lack of funding, thirdly, there are problems in the legal framework: the lack of the necessary legal mechanisms to regulate the use of digital technologies and, finally, the lack of the necessary specialists.

The problem of insufficient development of agriculture can be solved by attracting investments, targeted state support and large-scale informatization of industries [17]. Increasing the economic efficiency of the agricultural sector to the level of competitiveness in the world market is impossible without improving all areas of the economy, as well as introducing innovative technologies and production automation into its structures. Nevertheless, it is possible for agriculture to receive targeted expansion and development, subject to the creation of new links of the digital economy, with an increase in the productivity of agricultural enterprises to provide food to residents in the required amount, which will lead to the stability of the country's food security and an inevitable recovery of the economy as a whole.

At the same time, each country has its own digital agriculture system that meets the needs of that country and acts in the interests of national policies. As practice shows, the effectiveness of any national digital agriculture system is determined by the presence of a modern infrastructure that ensures information security, cybersecurity and personal data protection, electronic platforms for the provision of electronic services, digitized information under the jurisdiction of government bodies, full coverage of the territory with 4G and 5G broadband communications, information platforms, on the basis of which the interaction of services with persons employed in the agricultural sector is ensured, informational and financial support for people employed in agriculture.

3. THE STATE OF AFFAIRS AND DIGITALIZATION TRENDS IN FARMING

Stability of production is an indispensable requirement for the effective development of any branch of the national economy, but this factor is especially important in agriculture. The existing instability of agricultural production is manifested, first of all, in the annual fluctuations in the volume of crop production. Moreover, an increase in production does not necessarily lead to a decrease in the level of its variability. This is a consequence of the fact that the main focus is on increasing production volumes, and the task of increasing its sustainability remains unresolved. Therefore, it is necessary to develop such a structure for the use of agricultural land, which would optimally combine both an increase in production volumes and an increase in its sustainability in each agricultural enterprise.

Fluctuations in the production of agricultural products in the developing countries are often caused by a significant deterioration in the quality characteristics of agricultural land and land degradation. The main reasons for the decrease and annual variation in harvest volumes are associated with the lack of substantiated scientific and methodological approaches for the reorganization of agricultural enterprises, strategies for land use, the formation of a land use system, reliable, high-quality information on soil, geobotanical, hydrological, geological, soil-erosion and other types of survey, assessing the ecological state of lands, applying the landscape-ecological approach in solving issues of land use, organizing land tenure, land use, state financing of programs and measures for land restoration, increasing their productivity, lack of proper control over the state and use of land by agricultural producers.

An increase in the intensity of the degradation processes of the land and property complex, which has a negative impact on the development of harvest growing, is also associated with a sharp deterioration in the financial and economic situation of agricultural producers, with a decrease in the general level of farming culture and a violation of the requirements of the farming system, with the use of depleting types of land use and technologies.

International agreements and support from the Food and Agriculture Organization of the United Nations play a significant role in the development of national digital agriculture systems of developing nations which have significant agricultural sectors constituting important part of domestic economy. It supports the implementation of a unified statistical data system on agricultural production, which is of strategic importance for agricultural policy planning. An integrated web system TRIACS is supported in the developing countries, which includes modules for administration and control over payments of subsidies to farmers. Farmers are supported in the

development of digital technologies in agricultural and horticultural crops. The US Agency for International Development has developed software that allows the small-scale farmers to keep records of plants and send SMS alerts in case of plant diseases.

The Ukrainian Horticultural Business Development Project (UHBDP), sponsored by the Canadian Government through MEDA, provides tangible assistance to farmers. The program operates in the Nikolaev, Kherson, Zaporizhya and Odesa regions. The uniqueness of the program lies in the fact that it is a non-profit project of one or several companies, and it is aimed at a wide range of people working with the land. Assistance was also provided in the introduction of innovative technologies, in terms of digitalization, the creation of a database and a map of farms. This assistance is personal and is aimed at small farmers and land users, they are the focus of the project.

Within the framework of the program, continuous and local soil monitoring of agricultural lands using GIS technologies was deployed, information databases on soil fertility were formed, ecological frameworks were developed taking into account the relief conditions, genetic characteristics of the soil and its agricultural use, providing a deficit-free level of energy balance of the agricultural landscape. In addition, an landscape structuring of agricultural lands was carried out and the most effective measures to maintain and reproduce soil fertility were determined, taking into account its state in each agricultural landscape, recommendations were developed for the effective use of agricultural lands, the prevention and elimination of the consequences of negative processes (de-humification, erosion , over-consolidation, desertification, etc.), work has been launched on chemical reclamation and phytomelioration of acidic and saline soils, restoration of the fertility of degraded and low-value lands.

The creation of a system of information support for decision-making processes based on GIS technologies made it possible to increase the overall efficiency of agricultural production by presenting relevant analytical information on the entire range of necessary parameters for making optimal and timely management decisions. GIS technologies are especially important in the management of agricultural production in regions with risky farming. These territories require constant monitoring of the conditions for the development of crops and the conduct of agrotechnical and agrochemical measures. Surveillance can be carried out both in individual fields and within a district, region, or over a wider area [18].

In the process of introducing and using GIS technologies in crop production, the project at least partly connected number of agricultural units to satellite navigation systems, which allow, using a GPS receiver and special software, to obtain the exact coordinates of the contours of the fields. An important element of the process of collecting, analyzing and processing the necessary data for the subsequent adoption of informed management decisions and their expert support is software and hardware (dispensers, measuring sensors) and their relationship [19].

4. EMPIRICAL ANALYSIS OF ICT USAGE IN SMALL FARM VEGETABLE GROWING

For the purpose of this research the vegetable farming in the East and South Europe is chosen where over the past 35 years, the amplitude of fluctuations in vegetable production reached 242% of the average annual harvest for this period. The volumes of other agricultural products harvesting also experienced significant fluctuations, which negatively affected the efficiency of the related processing industries.

The main goal of this study is a theoretical and methodological substantiation of the need for the introduction and effectiveness of the use of information technologies on the platform of geographic information systems (GIS) in the implementation of agrotechnical measures in vegetable growing. For this analysis, the database of the UHBDP in terms of growing vegetables, collectively referred to as tomatoes, cucumbers and peppers, by small farms in Bulgaria, Romania and Ukraine is used.

Analysis of the time series of vegetable production in the region makes it possible to distinguish three stages in the development of vegetable growing, formed under the influence of general structural changes in the agrarian economy over the past thirty plus years, that is, during the transition of the studied countries from a planned socialist economy to a market economy and the improvement of the latter. In the pre-reform period, vegetable farms for sowing annually bought seeds of the elite and the first reproduction, which ensured a sufficiently high yield and varietal purity. Mineral fertilizers were widely used and the intensive development of technology has also contributed to the annual increase in the yield of vegetables.

The process of reduction of acreage of vegetable crops in the 90s was accompanied by a decrease in yields and gross harvest of vegetables. This situation is associated with the prevailing price disparity in the sub-industry, which led to a shortage of working capital from producers for the purchase of mineral fertilizers, chemical protection products, high-quality seeds, and equipment renewal. The technology of growing vegetables was simplified everywhere, the quality of the product obtained decreased. The fall in effective demand led to a decrease in their production by more than 3 times while sales dropped by almost 40 times. Vegetable lands were often sown with other crops with lower agrotechnical qualities and a high degree of weed infestation. During the period from 1990 to 2001, the technical equipment of vegetable growing has sharply decreased. Depreciation of energy resources, primarily tractors, amounted to 90%, other equipment - 65%, the doses of fertilizers, the volume of capital investments in the reconstruction and construction of reservoirs, pumping stations, rice irrigation systems were reduced significantly, which led to a decrease in productivity, the gross harvest of vegetables in the region decreased annually by an average of 12%.

The alignment of price relations in agriculture and related sub-sectors in the period after 2002, the intensification of the financing of vegetable growing from the state and regional budgets led to the fact that the domestic vegetable market became profitable, and it became profitable for producers to invest in its production. The increase in the doses of mineral fertilizers ensured an increase in the yield of vegetables. Since 2005, the area under vegetables has expanded by an average of 7% per year. However, natural and climatic conditions do not allow excluding the import of vegetables from the balance of products.

In the first post-reform decade, the main factors of fluctuations in the indicator were the economic crisis, the unstable price situation in the rice and adjacent markets and the lack of funds from producers to carry out reproduction processes in the sub-industry, as well as natural and climatic features. The low value of the sustainability of the trend in the area under vegetables in the last decade is a consequence of the reactions of producers to the changing conditions in the markets of agricultural raw materials by shifting the area under crops for more profitable crops like corn and sunflower.

The analysis of the structural variability of the trend was carried out by using the econometric modelling. Its advantage is the use of one general regression equation, rather than several piecewise linear dependencies in the period under consideration.

The linear regression equation with dummy variables is:

$$y = \alpha + \beta \bar{x} + \gamma \bar{d} + \varepsilon$$

(1)

Conference

where y is the dependent variable, x is a vector of independent variables, d is a vector of dummy variables (if it corresponds to the truth, it is equal to one, otherwise it is equal to zero), α is a free coefficient, β , γ are estimated regression parameters, ε is the regression error.

The difference in the size of the harvest of the current year to the previous one in absolute terms was chosen as a dependent variable, and the absolute value of the difference in the amount of fertilizers applied to the vegetable crops and dummy with unit value in case of application of GIS technologies as independent variables. Analyzing the relationship between the volatility of vegetable yields in the region and the difference in the doses of fertilization and use of GIS technologies, a linear equation of the following form was compiled:

 $YLD_{ii} = \alpha + \beta FRT_{ii} + \gamma GIS_i + \varepsilon$

(2)

where YLD_i is the difference in yield of a type of vegetables in agricultural organizations of the region, FTL_i is difference in the amount of mineral fertilizers applied per hectare of planting a type of vegetable crops in agricultural organizations of the region during the period under review, c/ha, GIS is a dummy variable, the value of which is equal to one if the farmer used GIS technologies and zero if not, i is individual farm, j is correspondingly means tomatoes, cucumbers and paprika.

Application of linear regression for the above equation for each type of studied vegetable crops produced the following results:

Dep. Variable:	TM	Г	C	СВ	PPR		
No. Observations:	361		3:	32	192		
R-squared:	0.71	2	0.6	556	0.840		
Adj. R-squared:	0.78	4	0.6	564	0.929		
F-statistic:	345.	0	20	5.8	178.7		
Prob (F-statistic):	0.00	0	0.0	000	0.000		
Log-Likelihood:	1463	.8	953	3.06	726.31		
vars	FRT	GIS	FRT	GIS	FRT	GIS	
coef	2.1486	-10.3178	1.5037	-3.2090	2.1889	-7.9265	
std err	0.076	1.378	0.035	0.437	0.090	1.434	
t	28.234	7.486	42.736	7.350	24.240	5.526	
P> t	0.000	0.000	0.000	0.000 0.000		0.000	
Omnibus:	91.90	59	45.	838	26.359		
Prob(Omnibus):	0.00	0	0.0	000	0.000		
Skew:	-0.11	13	0.0)30	0.026		
Kurtosis:	1.94	4	2.0)66	2.045		
Durbin-Watson:	1.68	1	1.662		1.701		
Jarque-Bera (JB):	17.54	47	12.121		7.314		
Prob(JB):	0.000	155	0.00)233	0.0258		

Table 2. Results of econometric estimation for tomatoes (TMT), cucumbers (CCB), paprika (PPR)

All coefficients of three equations (2) turned out to be statistically significant at a one-percent level of significance, therefore, a change in the independent factors was accompanied by a change in the resulting amount of dependent variable. Analysis of the set of vegetable yields in the region showed a statistically significant dependence on the parameters of the linear trend in the studied data which are the change in amount of fertilizer used and application of GIS technology. Moreover, all the coefficients have the expected sighs. So, the positive coefficient of a variable standing for difference in mineral fertilizer use negatively affects the stability of the levels of the yields, which characterizes the deviations of the actual levels of the set relative to the previous year, while the negative sign of the coefficient responsible for the application of GIS supports the stability of the trend in the analyzed periods.

Note that the data is best approximated by a linear relationship, which indicates a significant reserve for the improving the stability of the vegetable sub-sector of the agriculture of the region. The coefficient of stability of the yield in this period was 32%, which is 11.5 percentage points higher than the coefficient of the growth trend of harvested areas. Thus, the growth of the gross harvest of vegetables in the region has recently been provided, to a greater extent by the growth of yields, rather than by extensive factors. An increase in the dose of mineral fertilizers per 1 kg of active ingredient per hectare of sowing led to an increase in yield by an average of 2.1 kg for tomatoes, by 1.5 kg for cucumbers and 2.2 kg for paprika. The influence of factors of development and modernization of vegetable growing in the equation identifies the dummy variable. The fact of application of GIS technology by a farmer on average leads to decrease in variability of yields by 10 centners for tomatoes, by 3 centners for paprika. Thus, it can be concluded that the GIS technology lead to more sustainable development in vegetable growing in small farms.

5. CONCLUSION

Digitalization of agriculture is a developing area aimed at increasing agricultural production through the improvement of information and communication processes. The digital technologies should also provide path to the sustainable development of farming. There are plenty of new tools to by introduced to the agricultural sectors but the degree of implementation of information technologies in agriculture is inextricably linked with the social-economic situation in the country and to expand the scale of informatization, along with economic conditions, political, technical and social conditions are required, especially in the developing countries. However, even small scale application of digital technologies like GIS in particular sub-sector of agriculture can provide necessary proof of positive influence of digitalization on sustainability of agriculture.

REFERENCES

- OECD, OECD Science, Technology and Innovation Outlook 2021: Times of Crisis and Opportunity, OECD Publishing, Paris, 2021. <u>https://doi.org/10.1787/75f79015-en</u>.
- [2]. World Bank. "Information and Communications for Development 2018: Data-Driven Development." Washington, DC: World Bank. 2018. https://openknowledge.worldbank.org/handle/10986/30437
- [3]. Gelb, E., A. Maru, J. Brodgen, E. Dodsworth, R. Samii, and V. Pesce. "Adoption of ICT enabled information systems for agricultural development and rural viability." In ICT adoption workshop at the IAALD-AFITA-WCCA conference, 2008. pp. 1-26.
- [4]. El Bilali, Hamid, and Mohammad Sadegh Allahyari. "Transition towards sustainability in agriculture and food systems: Role of information and communication technologies." Information Processing in Agriculture 5, no. 4 (2018): 456-464.
- [5]. Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the 'digital agriculture' revolution. J. Sci. Food Agric. 2018, 100, 5083–5092.
- [6]. Kumar, Abhay, and Krishna M. Singh. "Role of ICTs in rural development with reference to changing climatic conditions." ICT FOR AGRICULTURAL DEVELOPMENT UNDER CHANGING CLIMATE, Krishna M. Singh, MS Meena, eds., Narenda Publishing House 2012.
- [7]. Asiedu-Darko, E., and S. Bekoe. "ICTs as Enabler in the Dissemination of Agricultural Technologies: A Study in the East Akim District, Eastern Ghana." Asian Journal of Agricultural Extension, Economics & Sociology. 2014: 224-232.
- [8]. Steinfield, Charles, and Susan Wyche. "Assessing the role of information and communication technologies to enhance food systems in developing countries: A FOCUS on Eastern and Southern Africa." 2013.
- [9]. Meybeck, A., and S. Redfern. "Sustainable value chains for sustainable food systems." In Joint FAO/UNEP Workshop on Sustainable Value Chains for Sustainable Food Systems Rome (Italy) 8-9 Jun 2016. FAO/UNEP, 2016.
- [10]. Calicioglu, Ozgul, Alessandro Flammini, Stefania Bracco, Lorenzo Bellù, and Ralph Sims. "The future challenges of food and agriculture: An integrated analysis of trends and solutions." Sustainability 11, no. 1. 2019: 222.
- [11]. Ramasamy. Demand Based Agriculture Supplies Through ICT Applications for Smarter India. International Journal of Creative Research Thoughts, 5(11), 2017. 100-103.
- [12]. Das, Bibhunandini. "ICTs Adoption for Accessing Agricultural Information: Evidence from Indian Agriculture §." Agricultural Economics Research Review 27, no. 2, 2014: 199-208.
- [13]. Gupta, Ranu, and Pawan Kumar Sharma. "Scope of E-Commerce in Agri-Business in India: An Overview." Int. J. Adv. Sci. Res. Manag, 2018.
- [14]. Demestichas, Konstantinos, and Emmanouil Daskalakis. "Data lifecycle management in precision agriculture supported by information and communication technology." Agronomy 10, no. 11 (2020): 1648.
- [15]. Calin, Henriette Cristiana, Radu Antohe, and Florica Georgeta Rotaru. "Information and communication technology (ICT) based on modern farming: solution for sustainable agriculture." In International Conference on Competitiveness

of Agro-food and Environmental Economy Proceedings, vol. 7, pp. 183-188. The Bucharest University of Economic Studies, 2018.

- [16]. FAO. *The future of food and agriculture Alternative pathways to 2050. Summary version.* Rome. 2018. 60 pp [17]. Burlacu, G.; Costa, R.; Sarraipa, J.; Jardim-Golcalves, R.; Popescu, D. A Conceptual Model of Farm Management Information System for Decision Support. In Proceedings of the Technological Innovation for Collective Awareness Systems; Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 47–54.
- [18]. Kingsley, J.; Lawani, S.O.; Esther, A.O.; Ndiye, K.M.; Sunday, O.J.; Penížek, V. Predictive Mapping of Soil Properties for Precision Agriculture Using Geographic Information System (GIS) Based Geostatistics Models. Mod. Appl. Sci. 2019, 13, 60.
- [19]. Buttafuoco, G.; Lucà, F. The Contribution of Geostatistics to Precision Agriculture. Ann. Agric. Crop Sci. 2016, 1, 1008.

Recycling of aged inkjet prints with nano technology based inks

Ivana Bolanca Mirkovic^{*1}, Marina Vukoje¹, Zdenka Bolanca², Filip Vuckovic¹

Abstract

Paper recycling has become an imperative at the end of the life cycle of all paper products. The development of technological processes in printing technology is usually associated with innovations in printing presses, but significant contributions also occur in the use of new graphic materials. In this research special attention was given to new formulation of printing ink which is based on nanotechnology. The samples were printed on a digital inkjet printing press Kodak Prosper 6000C. The mentioned printing press is using Adaphos NIR® technology for drying inkjet prints. The significance of this method is important because it provides the possibility of printing newspapers, but due to the reduction of energy use, which contributes to the reduction of the carbon footprint and the greenhouse effect. Another notable reason to use the selected printing press is in the use of new inks formulation which is based on nanotechnology. Nano-sized inks particles provide important properties to the prints obtained, for example enabling higher optical densities, as well as volume of gamut. Due to the stated property, as well as due to a good comparison with the real conditions of recycling the printed samples were subjected to a process of accelerated aging. The process of accelerated aging was conducted at several different intervals in order to study the effect of accelerated aging on the properties of recycled laboratory paper sheets. The process of accelerated aging was simulated in a climate chamber under conditions of elevated temperature and humidity and without the influence of solar radiation. By changing the printing technique, using nanotechnology-based inks, the changes in the qualitative properties of recycled sheets of laboratory paper occur. Changes in qualitative properties are manifested in the changes in the optical properties of laboratory sheets of paper, which are studied in this scientific paper.

Keywords: Inkjet prints, nanotechnology inks, accelerate ageing, recycling, optical properties

1. INTRODUCTION

Environmentally more sustainable production includes: innovative materials, clean technologies, closed loop systems, energy and material flows [1]. Generally, sustainability is significant for the development and except the concept of environment includes economic and social factors, implementation of society values and quality. Fortunati and O'Sullivan investigated the social sustainability of print newspaper versus digital media, and how the media system is an important factor of social participation and sustainable social change, as well as compared their economic model [2].

Cleaner production in graphic process of printing is a term for conserving raw material and energy, pollution prevention and emission reducing. For graphic products it means reducing their environmental impact during

^{*&}lt;sup>1</sup>Corresponding author: University of Zagreb Faculty of Graphic Arts, Getaldiceva 2, 10000 Zagreb, Croatia ivana.bolanca.mirkovic@grf.unizg.hr

¹ University of Zagreb Faculty of Graphic Arts, Getaldiceva 2, 10000 Zagreb, Croatia <u>marina.vukoje@grf.unizg.hr</u>, <u>filip.vuckovic@grf.unizg.hr</u>

²Croatian Academy of Engineering, Kaciceva 28, 10000 Zagreb, Croatia, <u>zbolanca@hatz.hr</u>

life cycle. Life cycle assessment of the product has to be considered and included in planning and starting from graphic design in early stage of product creation [3, 4].

The ecological footprint largely depends on the printing techniques, the chemical composition of the ink, the type of printing substrate, and the characteristic of the prints, such as size and shape.

In the past, digital machines, due to their capacity and technology, were tied only to small editions, but with the development of computer speed and RIP software, new graphic materials, especially dyes, are also associated with large editions. With the advancement of technology high-performance digital machines can make a print that follows the quality of conventional printing techniques. Contributes to the increasing use of the mentioned technologies are reduced of relative costs of digital printing techniques [5]. The digital printing contributes to sustainable development. These printing techniques, in regard to some printing techniques has advantage in fewer influence on environment mainly due to faster make ready and the absence of plate making and its related chemicals, materials, emissions and wastes [6].

Easiest ways to reduce the environmental impact of printing is to use eco-friendly inks: water based, plant based and nanoparticles based inks. New formulated inks emit very few organic compounds while they dry and as a result, are better air quality in working area. In the water based ink higher alcohols or glycols act as moisteners and are probably the oldest eco-friendly ink available. Algae based inks are relative innovation [7]. These inks make use of renewable algae cells as the basis of their black pigment. Plant based ink from algae and other plant based materials for inkjet printing will still be developed [8].Steward and co- authors investigated of nanoparticle innovation with application to print on paper. They using network mapping method and three types of nano-innovation, which includes in research: nano inks, nano fiber and nano coating [9].Authors concluded that the emergent contributes tendency is to the performance goals of printability rather than drinkability.

Sustainable production of the raw materials for papers can be obtained from any virgin fibers which is FSC certified, but the mentioned raw materials are not often used in the production of newsprint printing substrate because newspaper printing substrate doesn't require such optical and mechanical properties It is usually to use raw materials with large amount of recycled fibers [10]. Recycled fibers are even more environmentally friendly than FSC certified fiber, because recycled fibers require less bleaching than virgin fibers obtained from trees. Primarily, recycling facilitates in reducing the production of methane from landfills. Due to climate change concerns about the environment, climate change and the optimal utilization of natural resources, much attention has increasingly been paid to shifting waste management up the waste hierarchy. The researcher from University College London found that greenhouse gas emissions would increase by 2050 if will be recycled more paper as current methods and use fossil fuels and electricity from grid [11].

In this paper presents the influence of printing techniques, ink and substrate formulation as well as prints exposed to moist heat accelerated ageing on ink detachment in recycling process. Deinking ability is explained in terms of brightness and effective residual ink concentration. The color coordinates L^* , a^* , b^* were used to determine the effects of residual ink, respectively a soluble color due dye. The results are important for obtained quality secondary raw material as well as in production new formulation of graphic materials.

2. EXPERIMENTAL PART

2.1. Materials

The Kodak water- based pigmented process color inkjet inks are used in the experimental work. The earlier color pigment inkjet inks were causing nozzle clogging and have poor color gamut. The advantage of Kodak for Stream inkjet technology lies in a propriety micro –milling process that de-aggregates and fractures primary particles, resulting in smaller ones. By connecting nanoparticle pigment and knowledge of pigment dispersant chemistry, that is ideal across a wide range of processes and applications. Kodak's inkjet inks with nanoparticle pigments enabling higher optical densities, higher volume gamut, has superior print durability including lightfastness and water fastness.

A wide range of commercially available inkjet compatible printing substrate can be run on Kodak Prosper 6000 C presses at full press speeds. These include industry standard uncoated, coated and glossy paper from 42-270 gsm. In this article a commercial printing substrate was used for printing a magazine. Coated paper has a special coating applied to the surface to one side. This coating allows the ink to be evenly absorbed into to paper.

The Kodak Prosper 6000 C press was used to print the samples. The press incorporates a number of smart components that optimize print quality [12]. This press use technical innovation in press design, drying, print speed and Kodak's Intelligent Prints innovation System (IPS). It is an advanced press management process that constantly monitors system operation to ensure color quality and imaging performance. The imaging system combine to delivering, there are significant ink saving compared to thermal inkjet presses. Prosper press is able to deliver print quality that's comparable to offset printing

2.2. Methods

2.2.1. Ageing of samples

Accelerated ageing is to expose the object to a higher level of energy, mostly heat but also to light or other radiation and aggressive pollutants. Deinkability behavior depends on different factors, and one of them is ageing of the prints. Colored inkjet prints with nanotechnology inks were exposed to moist-heat accelerated ageing at 80°C and 65% relative humidity without the light [13]. Samples treated 1,2,3,6 and 12 days in Kottermann 2306 conditional chamber.

2.2.2. Paper recycling process

Printed paper samples were recycled by means of chemical deinking flotation under laboratory conditions defined by standard procedures described in ISO 21993:2020 [14]. The ISO method is based on INGEDE Method 11[15]. Non-aged and accelerate aged samples were recycled. Samples with all chemicals were disintegrated using Enrico Toniolo disintegrator. A certain amount of pulp suspension was separated after disintegration process before flotation (marked UP). Remained pulp suspension was transferred to laboratory flotation cell. During flotation process, froth was collected and removed from pulp suspension. Residual pulp suspension was used for production deinked handsheets (marked DP). Laboratory paper handsheets of 45g/m² UP and DP were made using automatic sheet-forming device Rapid-Köthen Sheet, PTI [16]

2.2.3. Deinkability evaluation

The efficiency of recycling process was evaluated by measuring optical properties of laboratory handsheets made from un-deinked pulp (UP) and deinked pulp (DP) obtained from untreated inkjet prints and accelerate aged ones. Evaluation of optical parameters was conducted according to spectrophotometric standard methods. The spectrophotometer Technidyne ColorTouch was used to measure the L*a*b* values (under following condition: D50 illumination and 2^0), measure of diffuse blue reflectance factor, that is ISO brightness and determination effective residual ink concentration (ERIC number) by infrared reflectance

3. RESULTS AND DISSCUSSION

Flotation is the most used technology for ink removal in the paper recycling process. The deinkability is assessed by quality factor of the deinked pulp: color shade, dirt specks, and the efficiency of the process itself can be monitored by ink elimination, ERIC number and filtrate darkening.

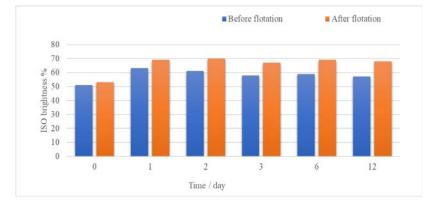


Figure 1. The value of ISO brightness handshets made from undeinked UP and deiked pulp DP and non aged and aged inkjet prints

Deinkability behavior depends on ageing of prints. The efficiency of deinking process (Fig.1) is further clarified by brightness gain (ΔB = brightness of handsheets made from DP pulp - brightness of handsheets made from UP pulp. The results show that the highest brightness gain is 11.3 points for 12 days aged inkjet prints, 10.11 points for 6 day aged prints, 9.00 points for 3 days aged prints, 9,00 points for 2 days aged prints, 6,02 points for 1day aged prints and 2,10 points for non- aged prints (Fig.1). These results show the efficiency of the recycling process in relation to the ageing days of the prints.

In addition brightness gain should be observed as ΔB = brightness of handsheet UP in relation of the prints ageing days – brightness of handsheets UP from non aged prints. The results show: UP _{1 day}-UP_{0 day} =12.10 points, UP _{2 days}-UP_{0 day} =10.05 points, UP _{3 days}-UP_{0 day} =7.30 points, UP _{6 days}-UP_{0 day} =8.02 points and UP _{12 days}-UP_{0 day} =6.03 points.

Brightness after pulping illustrates variation in ink fragmentation, and depends on the type of ink. Typical water based inkjet inks disintegrate into very small particles during pulping. These particles are very difficult to remove by flotation deinking and remain in the suspension and can reattach to the fibers. In general, the ink removal process by deinking flotation process is based on the difference between hydrophobic inks and hydrophilic paper fibers, which is not the case here.

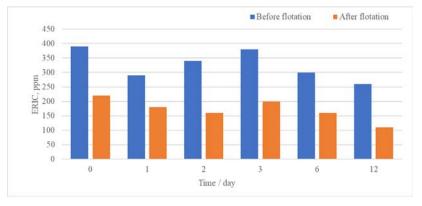


Figure 2 The value of the ERIC for handshets made from non deinked UP and deiked pulp DP and non aged and aged inkjet prints

ISO brightness is affacted by the presence not only of ink also of other light absorbing material in the blue part of the spectrum as lignin, cromophores and dyestuffs. The ink Effective Residual Ink Concertation (ERIC) method mesaurents in the infrared part of the spectrum and the light absorption coeficient of the ink is greater

than the asorption coeficient of the fibre and other components and provide sensitiv estimating the concentration of ink, and is most effective for submicron particles.

T printshe obtained results show an inversely proportional relelationship betwen the resolts of brightness and ERIC, ie increasing the brightness, decreaes the value of ERIC. The results for handsheets UP show: UP $_1$ day-UP₀ day =- 100 points, UP $_2$ days-UP₀ day =-50 points, UP $_3$ days-UP₀ day =-10 points, UP $_6$ days-UP₀ day =-91 points and UP $_{12}$ days-UP₀ day =-130 points, and for handsheets DP show: UP $_1$ day-UP₀ day =-40 points, UP $_2$ days-UP₀ day =-20 points, UP $_6$ days-UP₀ day =-40 points and UP $_{12}$ days-UP₀ day =-20 points, UP $_6$ days-UP₀ day =-40 points and UP $_{12}$ days-UP₀ day =-10 points (Fig.2). Bases on the results, it could be concluded that in some cases when ink particles have detached from the fibers and dispersed into the aqueous phase that they are redeposited on the fiber surfaces.

Figure 3 shows the L* chromatic coefficient which presents the lightness of the color on handshets made from un-deinked pulp (marked UP) and deinked pulp (marked DP) obtained from untreated inkjet prints and accelerate aged. The results obtained are as follows: L*UP non aged prints-L*DP non aged=-2.21 points, L*UP 1 day aged prints-L*DP 1 day aged=-2.69 points, L*UP 2 days aged prints-L*DP 2 days aged prints=-5.31 points, L*UP 3 days aged prints-L*DP 3 days aged prints=-6,30 points, L*UP 6 days aged prints-L*DP 6 days aged prints=-5,39 points, L*UP 12 days aged prints-L*DP 4,00 days aged prints=-4.00 points.

The influence of accelerated ageing of inkjet prints on the chromatic coefficient L* of the handsheet UP made from non-deinked pulp was determined as follows: L*UP1 day aged prints-L*UP non aged prints =5.51, L*UP 2 days aged prints-L*UP non aged prints = 4.20, L*UP 3 days aged prints-L*UP non aged prints = 3.80, L*UP 6 days aged prints L*UP non aged prints = 4.11, L*UP12 days aged prints-L*UP non aged prints =3.40.

In addition, the results of the accellerted ageing influence on the chromatic coeficient L^* of handsheet DP are presented: L^*DPI day aged prints $-L^*DP$ non aged prints = 6.09, L^*DP2 days aged prints L^*DP non aged prints = 7.40, L^*DP3 days aged prints $-L^*DP$ non aged prints = 5.99, L^*DP6 days aged prints L^*DP non aged prints = 7.56, L^*DP12 days aged prints $-L^*DP$ non aged prints = 6.09.

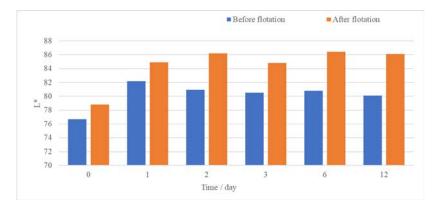


Figure 3. The value of the chromatic coefficient L* for handshets made from undeiked UP and deinked pulp DP and non aged and aged inkjet prints

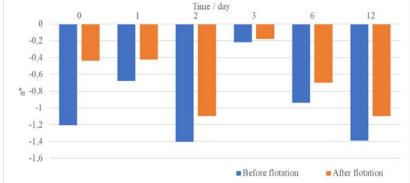


Figure 4. The value of the chromatic coefficient a* for handshets UP made from undeinked and handshets DP made from deinked pulp and non aged and aged inkjet prints

Chromatic coefficient a* represents colour position on red-green axis. All the results of measuring the chromatic coefficient a* are in the negative part of the red –green axis, so they are in the green area. The biggest negative value have handsheets as follows: handsheet UD, non $aged = a^*-1.21$, handsheet UD, $aged 2days = a^*-1.41$, handsheet UD, $12 days = a^*-1.39$. After deinking flotation, ecrease in the negative value of the chromatic coefficient a* was found in all cases, and the largest is for handsheet DP made from non aged inkjet prints, handsheet UD, non $aged = a^*-0.77$.

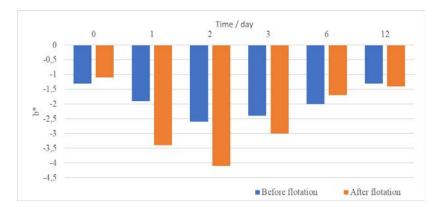


Figure 5. The value of the chromatic coefficient b* for handshets UP made from undeinked and handshets DP made from deinked pulp and non aged and aged inkjet prints

Chromatic coefficient b* represents color position on yellow-blue axis. All the results of measuring the chromatic coefficient b* are in the negative part of the yellow-blue axis, so they are in the blue areas. The best results are achieved by deinking flotation of the non aged sample: handsheet $_{UD, non aged} = b^{*}-1.31$ and handsheet $_{PD, non aged} = a^{*}-1.10$. With exposed to ink jet prints to moist heat ageing without the light does not notice the depedance to the value of the chromatic coefficient b^{*}

4. CONCLUSIONS

Despite the fact that the consumption of these kinds of printing inks based on nanotechnology is still limited, due to a precautionary principle it is necessar to examine thir possible impact on paper recycling process. The results of the optical properties of the recycled laboratory paper show that used inks are difficult to recycle,

although some changes were obtained by flotation, but the differences obtained are insignificant, i.e., very small. The deinking flotation method is not entirely the best method for recycling of prints with nano technology based inks because slight differences in the optical properties of the recycled laboratory paper (obtained before and after flotation) are achieved. Also, the colorimetric parameters indicate a slight coloration of the sheets of paper which may point to the release of colorants into the pulp suspension. Future research should be focused on new processes and/or chemicals research, such as adsorption or enzymatic deinking, which in other studies have proven to be successful methods for removal of poorly deinkable inks like water-based inks.

ACKNOWLEDGMENT

The authors are grateful for the financial support of the University of Zagreb .

5. REFERENCES

- [1]. I. Bolanca Mirkovic, I. Majnaric, Z. Bolanca,"Ecological sustainability and waste paper recycling *Procedia Engenering*, Vol. 100, pp 177-186, 2014.
- [2] L. Fortunati, and J. O'Sullivan, "Situating the social sustainability of print media in a word of digital alternatives", *Telematics and Informatics*, Vol .37, pp137-145, 2019
- [3] I. Bolanca Mirkovic, I. Majnaric, S. Mustac, and Z. Bolanca, "Printing and sustainability", IARIGAI, 38, Eds. E. Nils, M. Lovrecek, Advances in Printing and Media Technology, Vol.37, pp. 361-368, 2012
- [4] Y.V. Fan, H.H. Chin, J.J. Klenas, P.S. Vorbanov, and X. Liu, "Optimization and process design tools for cleaner production", *Journal for Cleaning Production*, Vol.247, pp 119-181, 2019
- [5] M. Karinieme, M.Nors, and H. Pihkola, "Evaluating environmental sustainability of digital printing," in Proc. NIP 26, 2010, pp. 92-96
- [6] P. Viluksela, M. Kariniemi, M. Nors, "Environmental performance of digital printing", Research Centre of Finland, Research Note 2538, 2010.
- [7] M.Shall (2021.) Water and plant-based inks gaining popularity with environmental consciousness on the rise [Online], Available <u>http://www.bigpicture</u> com/sustainable-digital-printers-should-know-these.ecofriendly-inks
- [8] (2020.) EcoEnclose web site [Online] What is the most sustainable ink? https://www.ecoenclose.com
- [9] F.Steward, J. C.S. Tsio, A.M. Coles, A comparison of nanoparticle and deinking niches as emergent sociotechnical networks, Univ. of London, Brunel, Tech. Rep. UB8 3PH, 1-23,2019.
- [10] P. Bajpai, Environmentally Friendly Production of Pulp and Paper, New Jersey, Jon Wiley & Sons, 2010
- [11] (2020.), Science daily website, Paper recycling must be powered by renewables to save climate [Online], Available, <u>http://www.sciencedaily/2020/10/2010199112119.htmoist</u>
- [12] (2018) Presses [Online], Available, printing.org/intertech-entries/Kodak-prosper-6000-presses
- [13] (2012) ISO 5630-3:2012 Paper and board-Accelerated ageing-Part 3: Moist heated treatment at 80°C and 65% relative humidity, [Online], Available: https://www.iso.org.> standard
- [14] INGEDE Method 11 [Online], Available: https://www. Ingede.org
- [15] (2004.) ISO 5269-2:2004, Rapid-Kothen method, [Online], Available: https://www.iso.org.> standard
- [16] (2015), ISO 5631-3:2015, Paper and board-Determination of color by diffuse reflectance-Part 3: indoor illumination condition (D 50/2⁰) [Online], Available, <u>http://www</u>. iso.org./standard, html 67156

Changes in Color and Drying Time of Modified Polyvinyl Acetate Adhesive with Nanoparticles

Gorana Petković¹, Marina Vukoje², Suzana Pasanec Preprotić², Rahela Kulčar²

Abstract

Adhesive bookbinding is growing in popularity due to advancements in adhesive binding technology, shorter delivery time and the introduction of innovative materials. It is suitable for medium volume books and enables the production of durable and flexible end-products in accordance with today's market needs, such as smaller product volumes and personalized consumer requirements. Polyvinyl acetate (PVAc) adhesives are widely used adhesives in the printing industry for paper, board, leather and cloth. In addition, water-based PVAc adhesives are more environmentally acceptable, compared to used hotmelts. In order to improve PVAc limiting and retain its existing positive properties, numerous studies dealing with modification of PVAc adhesives have been carried out. The aim of this research was to investigate the impact of PVAc modification with SiO₂ and TiO₂ nanoparticles on the end-product appearance and the productivity of the production process, more precisely change in color and drying time. Colorimetric values of dried PVAc and nano-modified PVAc adhesive films were measured on five different paper substrates, according to ISO 11475:2017 standard, in order to calculate the total color difference (CIEDE2000). Results showed that the color difference between dried PVAc and nano-modified PVAc films is not recognizable by a standard observer, but it is slightly larger with TiO₂. The drying time of PVAc and nano-modified PVAc adhesive films was observed over a period of 60 minutes. Adhesives were applied on transparent foil and observed under UV light in a Judge II X-rite lightbox. Results showed that nano-TiO₂ PVAc adhesive has much shorter drying time. According to obtained results it can be concluded that both types of nanomodified PVAc adhesives, as well as the original PVAc, are suitable for the production of end-products with a visible adhesive line. By adding TiO_2 nanoparticles the productivity of the production process can be improved due to reduced drying time.

Keywords: adhesive color, adhesive drying time, nanoparticles, polyvinyl acetate, short-run products

1. INTRODUCTION

Graphic production, especially post press bookbinding processes, include various types of bonding and adhesives. Currently, the most common adhesives used in bookbinding can be divided into three main categories: water-based emulsions (e.g. polyvinyl acetate), hot melts (e.g. ethylene vinyl acetate) and reactive hot melts (e.g. polyurethane). Polyvinyl acetate adhesives (PVAc) are customized for the short runs of graphic production or production of personalized products on demand [1]. Current guidelines for the development of adhesive technology are focused on replacing solvent–based adhesives with water-based [2], and therefore PVAc is much more environmentally acceptable compared to the other two. Polyvinyl acetate (PVAc) is a clear, water-white, thermoplastic synthetic resin produced from its monomer by emulsion polymerization. PVAc is a good adhesive for paper, plastics, metal foil, leather, cloth and wood, but it is also used as a general building adhesive [3]–[5]. PVAc sets through evaporation and diffusion of the water into the substrate, and at the same time, by polymerization of polymer particles as the water evaporates [3], [6]. In order to improve

¹Corresponding author: University of Zagreb, Faculty of Graphic Arts, Getaldićeva 2, 10000 Zagreb, Croatia. gorana.petkovic@grf.unizg.hr

²University of Zagreb, Faculty of Graphic Arts, Getaldićeva 2, 10000 Zagreb, Croatia.

PVAc limits and retain its existing positive properties, numerous studies dealing with modification of PVAc adhesives have been carried out. In previous studies, most researchers have been using nano clay (NC) [7], [8], cellulose nanofibrils (CNFs) [9], silica (SiO₂) [10]–[13] or titanium dioxide (TiO₂) [10], [11], [14] nanoparticles for the improvement of PVAc properties. The modification of PVAc adhesive with nanoparticles is successful if the adhesive retains its existing positive properties, such as satisfactory adhesive joint strength and invisibility of the dry adhesive film, with a positive effect of nanoparticles on its limiting properties, such as long drying time and low resistance to temperature and humidity changes [3], [6], [15]–[18].

In our previous research a significant increase in adhesive joint strength [19] and positive effect on the increase of the adhesive joints resistance to temperature and humidity changes [20] by addition of 1% SiO₂ or 1% of TiO₂ nanoparticles in the PVAc adhesive was demonstrated. In addition, the optimum nanoparticle concentration in PVAc adhesive was defined by determination of the surface free energy and by analysis of the paper-adhesive samples morphological structure using scanning electron microscopy and Fourier transform infrared spectroscopy [21]. The aim of this research was to investigate the impact of PVAc modification with SiO₂ and TiO₂ nanoparticles on the end-product appearance and the productivity of the production process, more precisely changes in color and drying time.

2. MATERIALS AND METHODS

2.1. Adhesive

Used polyvinyl acetate adhesive (Signokol L) is water dispersion of vinyl acetate homopolymers with polyvinyl alcohol and addition of plasticizers. Properties of the used adhesive are listed in Table 1.

PROPERTY	APPEARANCE / VALUE:
State of Matter:	liquid
Main Purpose:	paper, board
Color:	white
Dry Film Color:	transparent
Density (20 °C):	1.0776 g/cm ³
Viscosity (20 °C):	8-10 Pa s
pH Value:	6 ± 0.5
Solid Content:	$45 \pm 2\%$

Table 1. Properties of Signokol L adhesive given by the producer [22]

2.2. Nanoparticles

Silica (SiO₂) (Aerosil R 8200) and titanium dioxide (TiO₂) (Aeroxide P25) nanoparticles were used for PVAc adhesive modifications. Both are odorless, solid, white powders with approximately the same temped density (140 g/L), but a different BET surface area (135–185 m²/g SiO₂; 35–65 m²/g TiO₂) and assay based on ignited material (\geq 99.8% SiO₂; \geq 99.5% TiO₂) [23], [24].

2.3. Substrates Used for Application of Adhesive Film

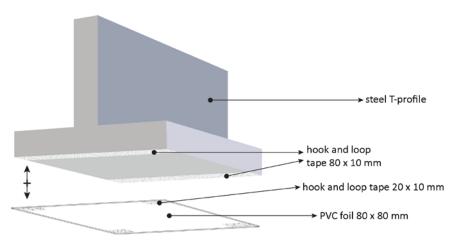
PVAc and nano-modified PVAc adhesives were applied on different papers described in Table 2. All of them belong to a different paper type group, based on fiber composition. After drying of adhesive films on the paper surfaces, changes in color of PVAc and nano-modified PVAc adhesives were observed.

TRADE NAME	TYPE	GRAMMAGE [g/m ²]	ABBREVIATION
Amber Graphics	woodfree uncoated	100	WFU
Garda Gloss	woodfree coated	115	WFC
Munken White	containing wood (bulky)	90	CW
Navigator Universal	woodfree, office	80	WF office ¹
Recy Office	containing recycled (100%), office	80	CR office

Table 2. List of used papers and their properties

In addition, adhesives were applied on transparent polyvinyl chloride (PVC) foil, with thickness of $180 \,\mu$ m, to observe changes in adhesive drying time.

2.4. Adhesive Preparation


Three types of adhesives were used – neat PVAc adhesive and PVAc adhesive modified with 1% of SiO₂ and 1% of TiO₂ nanoparticles. After adding 1% of nanoparticles to neat PVAc adhesive, IKA T 25 digital ULTRA-TURRAX disperser was used for mixing and adhesive homogenization. Adhesive was stirred for 15 minutes, firstly 5 minutes at lower stirring speed (from 3500 to 7000 rpm) and then 10 minutes at 7000 rpm. The same mixing procedure was used for both nano-modified adhesives.

2.5. Determination of Changes in Adhesive Color

Preparation of samples, for the evaluation of adhesives color changes, involved manual application of adhesive (with a brush) on pre-cut sheets of paper (210 x 99 mm), 48 hours of drying (18° C – 20° C, 60% - 70% RH), measuring of dry adhesive thickness in order to select five samples from each sample group (75 samples in total) and cutting selected samples on smaller dimensions 40 x 20 mm. Changes in color for selected papers with PVAc adhesive and those same papers with nano-modified PVAc adhesives, were evaluated in accordance with ISO 11475:2017 standard [25], using X-Rite SP62 Sphere spectrophotometer (D65/10°). After determination of the colorimetric parameters (L^* , a^* and b^*), the total color differences between the papers with PVAc adhesive and the papers with nano-modified PVAc adhesives (CIEDE₂₀₀₀) were calculated.

2.6. Determination of Changes in Adhesive Drying Time

The drying time of PVAc and nano-modified PVAc adhesive films was observed over a period of 60 minutes. For testing purposes, it was necessary to construct the auxiliary steel tool shown in Figure 1.

Figure 1. The auxiliary steel T-tool

Adhesives were applied with a brush on non-absorbent transparent PVC foil (80 x 80 mm). As defined period of time (1, 2, 4, 8, 16, 20, 30, 40, 50 or 60 min) has expired, the pressure was applied with another PVC foil fastened with self-adhesive "hook and loop" tape to the T-tool. Immediately after the application of pressure, PVC foils from the T-tool were left at room temperature (18° C - 20° C) allowing the accepted adhesive to dry completely. After 48 hours of drying, the final samples for the evaluation of the drying time were cut from the middle of foil sheets to 40 x 40 mm. Conclusions on the changes in drying time of adhesives were made based on the amount of adhesive accepted on the PVC foils from the T-tool. Samples were observed under UV light

in a Macbeth Judge II X-Rite lightbox due to the adhesive color (transparent, white, yellowish) which is not visible enough in daylight and after drying is almost completely transparent.

3. RESULTS AND DISCUSSION

3.1. Changes in Adhesive Color

The values of colorimetric parameters (L^* , a^* and b^*) of papers with PVAc and papers with nano-modified PVAc adhesives are given in Table 3, along with the results of the total color difference between dried PVAc and dried nano-modified PVAc adhesive films on selected papers (CIEDE₂₀₀₀[nano-SiO₂ PVAc], CIEDE₂₀₀₀[nano-TiO₂ PVAc]).

 Table 3. Colorimetric values (L*, a*, b*) of papers with PVAc and papers with nano-modified PVAc adhesives, the total color difference (CIEDE2000[nano-SiO2 PVAc], CIEDE2000[nano-TiO2 PVAc])

		WFU		WFC		CW		WF _{office} ¹			CR office				
	L*	a*	b*	L*	a*	b*	L*	a*	b*	L*	a*	b*	L*	a*	b*
PVAc	93.20	1.51	-4.76	93.53	0.85	-1.25	93.18	0.91	1.05	92.32	2.65	-8.66	86.90	0.04	6.42
PVAc + 1 % SiO ₂	93.51	1.49	-5.07	93.77	0.94	-1.82	93.80	0.93	0.74	92.71	2.56	-8.56	87.67	0.03	5.64
PVAc + 1 % TiO ₂	93.35	0.98	-3.14	93.32	0.66	-0.57	93.35	0.62	1.76	91.89	2.22	-7.49	87.37	-0.11	5.89
CIEDE ₂₀₀₀ (nano-SiO ₂ PVAc)		0.33			0.57			0.49			0.27			0.79	
CIEDE ₂₀₀₀ (nano-TiO ₂ PVAc)		1.51			0.71			0.82			0.99			0.56	

Based on the calculated total color differences (CIEDE₂₀₀₀), it is evident that the color change of the adhesive is slightly larger when TiO_2 nanoparticles are added, but also that the difference between the color of PVAc adhesive and nano-modified PVAc adhesives applied to selected papers, after drying, is not recognizable by a standard observer (Figure 2) according to ISO 11475:2017 standard.

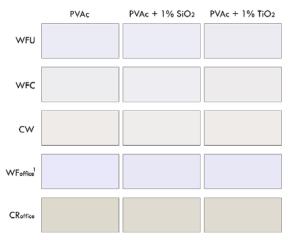


Figure 2. Color of tested papers with PVAc and nano-modified PVAc adhesives

The results of total color difference for nano-SiO₂ PVAc adhesive are 0.27 - 0.79, while the total color differences of nano-TiO₂ adhesive are 0.56 - 1.51, respectively. Given the obtained results, it can be concluded that nano-modified PVAc adhesives, as well as the original PVAc adhesive, are suitable for making graphic products with visible adhesive line, i.e. that the color of adhesive will not affect the appearance of the end-product.

3.2. Changes in Adhesive Drying Time

Ten different drying time intervals of the tested adhesives, observed under UV light, are shown in Figure 3. Figure 3 clearly shows that the drying of nano-TiO₂ PVAc adhesive is faster compared to PVAc adhesive, but also that nano-SiO₂ PVAc adhesive has a prolonged drying time. Areas without adhesive, made after a short contact with another PVC adhesive foil, represent drying of the observed adhesive sample. In order to notice the differences easier, areas without adhesive are marked in Figure 4.

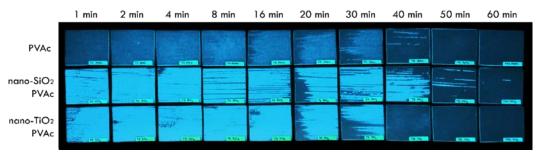


Figure 3. Adhesive samples accepted on transparent PVC foils after ten different time intervals (1-60 min)

Figure 4 (a) shows that after 1 minute only nano-TiO₂ adhesive started to dry. After 20 minutes a significant drying of all types of adhesives was noticed. After 30 minutes nano-TiO₂ adhesive continued to dry faster compared to other adhesives, but nano-SiO₂ PVAc adhesive was drying slower than the original PVAc adhesive. Figure 4 (b) shows complete drying of nano-TiO₂ adhesive after 40 minutes. The original PVAc adhesive was dried completely after 50 minutes, while nano-SiO₂ PVAc adhesive was not dry even after 60 minutes.

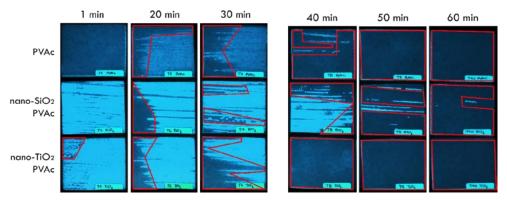


Figure 4. (a) Adhesive drying after 1, 20 and 30 minutes

(b) Adhesive drying after 40, 50 and 60 minutes

4. CONCLUSIONS

In this research PVAc adhesive was modified with SiO_2 and TiO_2 nanoparticles in order to improve its certain properties. Unfortunately, during adhesive modification it is not possible to selectively change only one desired property, such as the strength of the adhesive joint, thus it is necessary to test, observe and compare changes in all key properties.

The invisibility of the dry adhesive film stands out as one of PVAc's main advantages. The change in color, i.e. decrease in transparency after modification with SiO_2 and TiO_2 nanoparticles, was noticed during the application of the adhesive – on tool and protective equipment. Therefore, it was necessary to perform colorimetric determination of the dry adhesive films in order to test the suitability of nano-modified PVAc

adhesives for the production of graphic products with visible adhesive lines. Based on the presented results, it can be concluded that the color difference between PVAc and nano-modified PVAc films after drying is not recognizable by a standard observer and will not affect the appearance of the end-product. However, the highest total color difference had nano-TiO₂ PVAc adhesive film on woodfree uncoated paper.

Sometimes long drying time of PVAc adhesives can be a limiting factor for the fast delivery of personalized graphic products on demand, and thus drying time can become one of the key factors in the productivity of the production process. Based on the presented observation of adhesives drying time, it can be concluded that nano- TiO_2 PVAc adhesive had a much shorter drying time and that by adding TiO_2 nanoparticles the productivity of the production process can be improved. Unfortunately, by adding SiO_2 nanoparticles drying time was insignificantly prolonged.

In addition to already investigated PVAc performance improvements with SiO₂ and TiO₂ nano-modification, this study reconfirm the positive impact of selected nanoparticles on the quality of the end graphic products.

ACKNOWLEDGMENT

The authors are grateful for the financial support of the University of Zagreb, Grant under the title: "Characterization, durability and sustainability of advanced graphic materials and packaging".

REFERENCES

- M. Bigianti and A. Lanter, "Digital Printing Leads to Print Finishing Opportunities," 2014. [Online]. Available: https://postpressmag.com/uncategorized/2014/digital-printing-leads-to-print-finishing-opportunities/
- [2]. M. Jović, Z. Buhin, I. Krobot, and S. Lučić Blagojević, "Analiza okolišne održivosti tehnologije adheziva," Kemija u industriji, vol. 60, no. 5, pp. 269–276, 2011.
- [3]. S. Ebnesajjad, Ed., Adhesives Technology Handbook, 2nd ed. Norwich, NY, US: William Andrew, 2008.
- [4]. A. Pizzi and K. L. Mittal, Eds., Handbook of Adhesive Technology, 2nd ed. New York, NY, US: Marcel Dekker, Inc., 2003
- [5]. M. T. Roberts and D. Etherington, Bookbinding and the conservation of books: A dictionary of descriptive terminology. Washington, NY, US: Library of Congress, 1982.
- [6]. D. E. Packham, Ed., Handbook of Adhesion, 2nd ed. Bath, UK: John Wiley & Sons, Ltd, 2005.
- [7]. D. Aydemir, G. Gündüz, N. Aşık, and A. Wang, "The Effects of Poly(vinyl acetate) Filled with Nanoclay and Cellulose Nanofibrils on Adhesion Strength of Poplar and Scots Pine Wood," Drvna industrija, vol. 67, no. 1, pp. 17–24, 2016, doi: 10.5552/drind.2016.1441.
- [8]. R. Moya, A. Rodríguez-Zúñiga, J. Vega-Baudrit, and V. Álvarez, "Effects of adding nano-clay (montmorillonite) on performance of polyvinyl acetate (PVAc) and urea-formaldehyde (UF) adhesives in Carapa guianensis, a tropical species," International Journal of Adhesion and Adhesives, vol. 59, pp. 62–70, 2015, doi: 10.1016/j.ijadhadh.2015.02.004.
- [9]. O. Chaabouni and S. Boufi, "Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties," Carbohydrate Polymers, vol. 156, pp. 64–70, 2017, doi: 10.1016/j.carbpol.2016.09.016.
- [10]. T. Bardak, A. N. Tankut, N. Tankut, E. Sozen, and D. Aydemir, "The effect of nano-TiO2 and SiO2 on bonding strength and structural properties of poly (vinyl acetate) composites," Measurement, vol. 93, pp. 80–85, 2016, doi: 10.1016/j.measurement.2016.07.004.
- [11]. N. Tankut, T. Bardak, E. Sozen, and A. N. Tankut, "The effect of different nanoparticles and open time on bonding strength of poly (vinyl acetate) adhesive," Measurement, vol. 81, pp. 80–84, 2016, doi: 10.1016/j.measurement.2015.12.003.
- [12]. N. Wen, Q. Tang, M. Chen, and L. Wu, "Synthesis of PVAc/SiO2 latices stabilized by silica nanoparticles," Journal of colloid and interface science, vol. 320, pp. 152–158, 2008, doi: 10.1016/j.jcis.2007.11.059.
- [13]. A. Bonnefond et al., "Effect of the Incorporation of Modified Silicas on the Final Properties of Wood Adhesives," Macromolecular Reaction Engineering, vol. 7, pp. 527–537, 2013, doi: 10.1002/mren.201300117.
- [14]. J. Ahmad, K. Deshmukh, M. Habib, and M. B. Hägg, "Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes," Arabian Journal for Science and Engineering, vol. 39, pp. 6805–6814, 2014, doi: 10.1007/s13369-014-1287-0.
- [15]. A. Salvini, L. M. Saija, S. Finocchiaro, G. Gianni, C. Giannelli, and G. Tondi, "A new methodology in the study of PVAc-based adhesive formulations," Journal of Applied Polymer Science, vol. 114, no. 6, pp. 3841–3854, 2009, doi: 10.1002/app.31032.
- [16]. IBookBinding, "Book Binding Tutorial: Glues Tips, Techniques, Types & Recipes," 2014. [Online]. Available: https://www.ibookbinding.com/blog/bookbinding-gluing-tips-techniques-types-info/.
- [17]. P. Šedivka, J. Bomba, M. Böhm, and P. Boška, "Influence of Temperature on the Strength of Bonded Joints," BioResources, vol. 10, no. 3, pp. 3999–4010, 2015, doi: 10.15376/biores.10.3.3999-4010.

- [18]. S. Kim, H. Kim, Y. M. Choi, and S. Jang, "Characteristics of Non-plasticizer PVAc Resin for Wood Products," Mokchae Konghak, vol. 35, no. 2, pp. 61–68, 2007.
- [19]. G. Petković, S. Pasanec Preprotić, and M. Vukoje, "The Quality Assessment of Bookbinding Strength for Polyvinyl Acetate Adhesive (PVAc) and Nano-modified PVAc Adhesives," in Proc. 9th International Symposium on Graphic Engineering and Design GRID, 2018, pp. 109–119, doi: 10.24867/GRID-2018-p13.
- [20]. G. Petković, I. Bolanča Mirković, and S. Pasanec Preprotić, "Čvrstoća adhezijskih nano-modificiranih polivinilacetatnih spojeva uslijed promjene temperature i vlage," in Proc. 20th International Conference on Materials - MATRIB, 2019, pp. 247–256.
- [21]. G. Petković, M. Vukoje, J. Bota, and S. P. Preprotić, "Enhancement of polyvinyl acetate (PVAc) adhesion performance by SiO₂ and TiO₂ nanoparticles," Coatings, vol. 9, no. 11, 2019, doi: 10.3390/coatings9110707.
- [22]. Signoplast, "Sigurnosno-tehnički list za kemijske proizvode: Signokol L," 2011.
- [23]. Evonik Industries, "Product information AEROXIDE P25," 2017.
- [24]. Evonik Industries, "Product information AEROSIL R 8200," 2013.
- [25]. Paper and board Determination of CIE whiteness, D65/degrees (outdoor daylight). ISO 11475:2017, 2017.

ICSD 2021

7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT

www.icsd.eu